簡易檢索 / 詳目顯示

研究生: 鄭登云
Zheng, Deng-yun .
論文名稱: 改良以微影製程製作PEDOT:PSS手指狀電極之步驟
Improving the process for fabricating PEDOT:PSS-finger-type electrodes by photolithography
指導教授: 大江昌人
Masahito, oh-e
口試委員: 潘犀靈
Pan, Ci-Ling
楊承山
Yang, Chan-Shan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 68
中文關鍵詞: 微影製程氧電漿改良
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 兆赫波(THz)元件需要比常用電極氧化銦錫(ITO)擁有更高穿透率之電極材料; poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)因其熱穩定性、穿透率以及可使用溶液配製,被廣泛應用在各種有機元件上。為了以PEDOT:PSS取代氧化銦錫使用在THz元件,我們利用微影製程以溶液製作PEDOT:PSS手指狀電極。
      然而,傳統使用溶液準備之PEDOT:PSS在玻璃基板上的圖案製作無法獲得良好的均勻度。為改良此問題,我們修改了原本步驟,增加兩道氧電漿程序在原來的微影製程步驟: 一道用在旋塗之前,另一道在掀離之前,前者用來改善光阻圖案的潤濕性,後者能夠幫助去除阻礙掀離步驟之部分旋塗PEDOT:PSS。應用此兩道氧電漿程序,可製成乾淨且較均勻(從±33.9奈米到±10.6奈米)之PEDOT:PSS圖案。


    Terahertz (THz) devices require electrode materials with higher transmittance than that of conventionally used indium–tin oxide (ITO); poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is widely used for various organic devices owing to its high thermal stability, transmittance and solution-process capability. To replace ITO with PEDOT:PSS in our THz phase shifter, we fabricate finger-like patterned electrodes of PEDOT:PSS using the solution process of photolithography.
    However, conventionally patterning PEDOT:PSS layers on glass substrates via the solution processes does not necessarily provides good uniformity. To improve this problem, we modify the conventional processes, introducing two additional oxygen (O2) plasma processes into the conventional photolithography processes: one is just before spin-coating PEDOT:PSS, and the other is before the lift-off process. The former improves the wettability on the patterned photoresist surface, and the latter would help partially remove the spin-coated PEDOT:PSS that impedes the lift-off process. Applying two additional processes, enables fabricating more uniform, defect-free PEDOT:PSS patterns; the deviation of thickness has been improved from ±33.9 nm to ±10.6 nm. We also discuss how the U-shape cross-sections of the patterns appear depending on the exposure conditions of O2 plasma.

    Contents 摘要 .....1 Abstract ......2 Acknowledgements ....3 Contents ....4 List of Figures ....6 Chapter 1 Introduction ....10 1.1 Terahertz Technology ....10 1.2 LC-based THz phase shifters ....11 1.3 Transparent electrode ....11 1.4 Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) ....12 1.5 Patterning PEDOT:PSS ....13 1.6 Purpose of the study ....14 Chapter 2 Experiments and methods ....15 2.1 Equipment ....15 2.2 Materials ....17 2.3 Sample preparation ....18 2.3.1 Glass cleaning ....18 2.3.2 Photolithography ....19 Chapter 3 Results and discussions ....22 3.1 Preliminary study of PEDOT:PSS ....22 3.1.1 Glass cleaning ....22 3.1.2 Thickness of PEDOT:PSS film ....25 3.1.3 Conductivity of PEDOT:PSS film ....27 3.2 Patterning of photoresist ....28 3.2.1 Parameters in photolithography ....28 3.2.2 Patterned photoresist ....32 3.3 Patterning of PEDOT:PSS ....34 3.3.1 Unsucceeded patterning of PEDOT:PSS ....35 3.3.2 Surfactant of PEDOT:PSS ....36 3.3.3 Concentration of surfactant ....37 3.4 PEDOT:PSS pattern ....42 3.4.1 Profile of PEDOT:PSS pattern ....42 3.4.2 Disadvantages of PEDOT:PSS pattern ....44 3.5 Additional process for optimization ....46 3.5.1 Oxygen plasma treatment before spin-coating ....46 3.5.2 Oxygen plasma treatment before lift-off ....55 3.6 PEDOT:PSS pattern made by optimized procedure ....61 Chapter 4 Conclusion ....63 Chapter 5 References ....64

    [1] Y. Shen, “Terahertz time-domain spectroscopy and imaging,” Journal of Electrical & Electronic Systems, 03(01), 2014.
    [2] Spence, D. E., Evans, J. M., Sleat, W. E. and Sibbett, W., "Regeneratively initiated self-mode-locked Ti: sapphire laser,” Optics letters, 16(22), 1762, 1991.
    [3] Rice, A., Jin, Y., Ma, X. F., Zhang, X., Bliss, D., Larkin, J. and Alexander, M., “Terahertz optical rectification from <110> zinc‐blende crystals,” Applied Physics Letters, 64(11), 1324-1326., 1994.
    [4] Köhler, R., Tredicucci, A., Beltram, F., Beere, H. E., Linfield, E. H., Davies, A. G., . . . Rossi, F., “Terahertz semiconductor-heterostructure laser,” Nature, 417(6885), 156-159, 2002.
    [5] Lin, X., Wu, J., Hu, W., Zheng, Z., Wu, Z., Zhu, G., . . . Lu, Y, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Advances, 1(3), 032133, 2011.
    [6] X. C. Zhang, B. Hu, J. Darrow, and D. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Applied Physics Letters, vol.56, no.11, pp.1011-1013, 1990.
    [7] Lin, C., Li, Y., Hsieh, C., Pan, R. and Pan, C., “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Optics Express, vol.16, no.5, pp.2995-3001, 2008.
    [8] R. Wilk, N. Vieweg, O. Kopschinski and Martin Koch “Liquid crystal based electrically switchable Bragg structure for THz waves,” Optics Express, vol.17, no.9, pp.7377-7382, 2009.
    [9] C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Applied Physics Letters, vol.88, no.10, 2006.
    [10] Hsieh, C., Lai, Y., Pan, R., and Pan, C., “Polarizing terahertz waves with nematic liquid crystals”, Optics Letters, 33(11), 1174, 2008.
    [11] D. E. Spence, J.M. Evans, W.E. Sleat. and W.Sibbett, “Regeneratively initiated self-mode-locked Ti: sapphire laser,” OPTICS LETTERS, vol. 16, no. 22, 1991.
    [12] Sahoo, A. K., Yang, C., Yen, C., Lin, H. C., Wang, Y., Lin, Y., …Pan, C., “Liquid Crystal Based Terahertz Phase Shifter with Bi-Layer Structure,” 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2018.
    [13] Yang, C., Kuo, C., Chen, P., Wu, W., Pan, R., Yu, P., & Pan, C, “High-Transmittance 2π Electrically Tunable Terahertz Phase Shifter with CMOS-Compatible Driving Voltage Enabled by Liquid Crystals,” Applied Sciences, 9(2), 271, 2019.
    [14] Ung, B. S., Liu, X., Parrott, E. P., Srivastava, A. K., Park, H., Chigrinov, V. G., Pickwell-Macpherson, E. “Towards a Rapid Terahertz Liquid Crystal Phase Shifter: Terahertz In-Plane and Terahertz Out-Plane (TIP-TOP) Switching,” IEEE Transactions on Terahertz Science and Technology, 8(2), 209-214, 2018.
    [15] Chen, C., Lin, Y., Chang, C., Yu, P., Shieh, J. and Pan, C., “Frequency-Dependent Complex Conductivities and Dielectric Responses of Indium Tin Oxide Thin Films From the Visible to the Far-Infrared,” IEEE Journal of Quantum Electronics, 46(12), pp.1746-1754, 2010.
    [16] Yang, C., Kuo, C., Tang, C., Chen, J. C., Pan, R. and Pan, C. “Liquid-Crystal Terahertz Quarter-Wave Plate Using Chemical-Vapor-Deposited Graphene Electrodes,” IEEE Photonics Journal, 7(6), 1-8, 2015.
    [17] Sun, Y., Yang, S., Du, P., Yan, F., Qu, J., Zhu, Z., . . . Zhang, C. “Investigate the effects of EG doping PEDOT/PSS on transmission and anti-reflection properties using terahertz pulsed spectroscopy,” Optics Express, 25(3), 1723, 2017.
    [18] Sasaki, T., Okuyama, H., Sakamoto, M., Noda, K., Okamoto, H., Kawatsuki, N., Ono, H. “Twisted nematic liquid crystal cells with rubbed poly(3,4ethylenedioxythiophene) /poly(styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys, 121, 143106, 2017.
    [19] Lin, X., Wu, J., Hu, W., Zheng, Z., Wu, Z., Zhu, G., … Lu, Y., “Self-polarizing terahertz liquid crystal phase shifter,” AIP Advances, 1(3), 032133, 2011.
    [20] Sahoo, A. K., Yang, C., Wada, O., Pan, C, “Twisted Nematic Liquid Crystal Based Terahertz Phase Shifter With Crossed Indium Tin Oxide Finger Type Electrodes,” IEEE Transactions on Terahertz Science and Technology, 9(4), 399-408, 2019.
    [21] Y. Dua, Y. Wua, Y. Zhanga, Y. Huoa “The antireflective properties of DMSO-doped-PEDOT:PSS films at THz frequencies,” Procedia Computer Science, vol.147, pp.17-23, 2019.
    [22] Le, Q., Claes, M., Conard, T., Kesters, E., Lux, M., & Vereecke, “G., Removal of post-etch photoresist and sidewall residues using organic solvent and additive combined with physical forces,” Microelectronic Engineering, 86(2), 181-185, 2009.
    [23] He, J., Wan, Y., Gao, P., Tang, J. and Ye, J. “Over 16.7% Efficiency Organic-Silicon Heterojunction Solar Cells with Solution-Processed Dopant-Free Contacts for Both Polarities,” Advanced Functional Materials, 28(34), 1802192, 2018.
    [24] Y. Xia, K. Sun, and J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Advanced Materials, vol. 24, no. 18, pp. 2436–
    2440, 2012.
    [25] Rwei, S., Lee, Y., Shiu, J., Sasikumar, R. and Shyr, U. “Characterization of Solvent-Treated PEDOT:PSS Thin Films with Enhanced Conductivities,” Polymers, 11, 134, 2019.
    [26] Kim, N., Kee, S., Lee, S. H., Lee, B. H., Kahng, Y. H., Jo, Y., . . . Lee, K. “Highly Conductive PEDOT:PSS Nanofibrils Induced by Solution-Processed Crystallization.” Advanced Materials, 26(14), 2268-2272, 2013.
    [27] Singh, A., Mandal, S., Singh, V., Garg, A. and Katiyar, M., “Inkjet printed PEDOT:PSS for organic devices,” 16th International Workshop on Physics of Semiconductor Devices, 2012.
    [28] Qiao, Q, “Organic solar cells: Materials, devices, interfaces, and modeling,” Boca Raton: CRC Press, 2015.
    [29] F.Yan, Edward, P. J. Parrott, Benjamin S.-Y. Ung, and Emma Pickwell-MacPherson “Solvent Doping of PEDOT/PSS: Effect on Terahertz Optoelectronic Properties and Utilization in Terahertz Devices,” J. Phys. Chem. C, vol.119, no.12, pp.6813–6818, 2015.
    [30] S. Ouyang, Y. Xie, D. Wang, D. Zhu, X. Xu, T. Tan and Hon Hang Fong. “Surface Patterning of PEDOT:PSS by Photolithography for Organic Electronic Devices” Journal of Nanomaterials, vol. 2015, no. 603148, pp. 9 , 2015.
    [31] D. Mantione, I.D. Agua, W. Schaafsma, M. ElMahmoudy, I. Uguz, A. Sanchez-Sanchez, H. Sardon, B. Castro, George G. Malliaras, and David Mecerreyes, “Low-Temperature Cross-Linking of PEDOT:PSS Films Using Divinyl sulfone,” ACS Appl. Mater. Interfaces, 9, 21, pp. 18254–18262, 2017.
    [32] E. Lim, “Enhanced photovoltaic performance of P3HT:PCBM cells by modification of PEDOT:PSS layer” Mol. Cryst. Liq. Cryst, vol. 585, pp. 53–59, 2013.
    [33] Yildirim, E., Wu, G., Yong, X., Tan, T. L., Zhu, Q., Xu, J., . . . Yang, S, “A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS,” vol. 6, pp. 5122-5131, J. Mater. Chem. C, 2018.
    [34] Semiconductor Technology from A to Z. (n.d.). Retrieved June 22, 2020.
    [35] Z. Xiong and C. Liu, “Optimization of inkjet printed PEDOT:PSS thin films through annealing processes,” Organic Electronics, vol. 13, no. 9, pp. 1532–1540, 2012.
    [36] H. J. Lee, T. H. Park, J. H. Choi et al., “Negative mold transfer patterned conductive polymer electrode for flexible organic light-emitting diodes, “Organic Electronics”, vol. 14,no. 1, pp.416–422, 2013.
    [37] J. R. Chan, X. Q. Huang, and A. M. Song, “Nondestructive photolithography of conducting polymer structures,” J. Appl. Phys., 99, 023710,2006.
    [38] S.-S. Yoon and D.-Y. Khang “Roles of Nonionic Surfactant Additives in PEDOT:PSS Thin Films” J. Phys. Chem. C, vol. 120, no. 51, pp. 29525–29532, 2016.
    [39] He, J., Wan, Y., Gao, P., Tang, J. and Ye, J. “Over 16.7% Efficiency Organic-Silicon Heterojunction Solar Cells with Solution-Processed Dopant-Free Contacts for Both Polarities,” Advanced Functional Materials, 28(34), 1802192, 2018.
    [40] Håkansson, A., Han, S., Wang, S., Lu, J., Braun, S., Fahlman, M., . . . Fabiano, S. “Effect of (3-glycidyloxypropyl)trimethoxysilane (GOPS) on the electrical properties of PEDOT:PSS films,” Journal of Polymer Science Part B: Polymer Physics, 55(10), 814-820, 2017.
    [41] Yang, M., Zhang, Y., Zhang, H. and Li, Z, “Characterization of PEDOT:PSS as a biocompatible conductive material,” 10th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2015.
    [42] Chou, T., Chen, S., Chiang, Y., Lin, Y. and Chao, C., ”Highly conductive PEDOT:PSS films by post-treatment with dimethyl sulfoxide for ITO-free liquid crystal display,” Journal of Materials Chemistry C, 3(15), pp. 3760-3766, 2015.
    [43] Charlot, B., Sassine, G., Garraud, A., Sorli, B., Giani, A. and Combette, P., “Micropatterning PEDOT:PSS layers,” Microsystem Technologies, 19(6), 895-903, 2012.
    [44] Wang, X., Östblom, M., Johansson, T. and Inganäs, O, “PEDOT surface energy pattern controls fluorescent polymer deposition by dewetting,” Thin Solid Films, 449(1-2), pp.125-132, 2004.

    QR CODE