簡易檢索 / 詳目顯示

研究生: 陳慶鴻
Chen, Ching Hung
論文名稱: 開發不孕症患者子宮內膜微小核醣核酸特徵與最佳著床時機之檢測平台
Establishment of A Novel Diagnostic Platform for Endometrial miRNA Signature and Optimal Embryo Transfer Timing of Infertile Patients
指導教授: 王慧菁
Wang, Lily Hui-Ching
口試委員: 翁順隆
Weng, Shun-long
李冠林
Lee, Richard
曾大千
Tseng, Ta-Chien
楊博鈞
Yang, Pok Eric
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 120
中文關鍵詞: 不孕症重覆著床失敗微小核糖核酸子宮內膜容受性非編碼核糖核酸多基因檢測分析晶片
外文關鍵詞: repeated implantation failure, endometrial receptivity, non-coding RNA, multi-gene analysis, PanelChip
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著試管嬰兒(IVF)在技術與成功率的提升與進步,仍有許多不孕症患者受到重覆著床失敗(RIF)與胚胎植入失敗。胚胎無法成功著床的因素之一是子宮內膜容受性改變,而內膜容受性由許多基因表現與協調控制,當植入窗口(WOI)移位,子宮內膜的狀態與胚胎植入的時間不同調,將導致胚胎植入失敗。微小核醣核酸(miRNA)是一種非經編碼的核醣核酸,過去研究指出,微小核醣核酸在懷孕著床過程中發揮非常重要的作用,可以調控與子宮內膜容受性相關的基因表現,進而影響胚胎著床。
    針對重覆著床失敗的研究,我們設計了與生殖相關的晶片PanelChip®,透過新穎的多基因擴增分析平台,取得重覆著床失敗與一般不孕症患者子宮內膜的微小核醣核酸表達數據,進行比對分析後,發現3個具有診斷潛力的微小核醣核酸-hsa-miR-718,hsa-miR-155-5p和hsa-20b-5p作為生物標記,進一步進行驗證分析,結果發現這3個標記能夠準確預測重覆植入著床失敗的患者,準確度可以達到90%以上。
    進一步我們希望建立一種以微小核醣核酸為生物標記來確定胚胎移植最佳植入窗口的分類器。為達成此目標,我們透過PanelChip®的技術,由試管嬰兒治療的患者中獲取微小核醣核酸表達圖譜。透過分析,我們找到並選擇其中的143個來開發分類器。結果顯示,我們所開發分類器具有88.5%的準確度,這個分類器通過分析微小核醣核酸的表達模式在準確識別最佳胚胎移植時間方面深具潛力,將有機會可以幫助提高試管嬰兒植入的成功懷孕機率。
    這項研究不僅強調了特定微小核醣核酸在預測 重覆著床失敗方面的診斷潛力,而且還為優化胚胎移植時機提供了一個有前景的工具,這些資訊的應用,將有機會可以幫助提高試管嬰兒植入的成功懷孕機率。


    Despite advancements in in vitro fertilization (IVF), some patients still face repeated implantation failures (RIFs) and challenges with embryo implantation. A key factor contributing to these issues is the lack of endometrial receptivity, regulated by the spatial and temporal coordination of gene expression. Additionally, a displaced window of implantation (WOI), where synchronization between the endometrium and embryo transfer timing is disrupted, complicates successful implantation. Previous research has identified microRNAs (miRNAs) as crucial regulators of gene expression essential for endometrial receptivity, making them important biomarkers in reproductive processes.
    To address RIF, we developed an amplification-based multi-gene analysis platform to detect miRNAs with differential expression in RIF patients. Our analysis identified six miRNAs that may influence genes associated with endometrial receptivity. Among these, hsa-20b-5p, hsa-miR-155-5p, and hsa-miR-718 emerged as promising diagnostic biomarkers, predicting RIF with over 90% accuracy.
    Upon the above finding, we used a specialized PanelChip® for reproductive purposes and analyzed miRNA expression profiles from 200 IVF patients. Of the 167 miRNAs identified, 143 were selected for classifier development. The classifier showed strong performance, with an accuracy of 93.9%, sensitivity of 85.3%, and specificity of 92.4% in the training cohort. Validation in a separate cohort confirmed an accuracy of 88.5%, highlighting its potential to identify the optimal WOI for effective embryo transfer accurately.
    This research highlights the potential of specific miRNAs as diagnostic biomarkers for RIF and presents a promising tool for optimizing embryo transfer timing, thereby improving IVF outcomes.

    著作版權聲明 i 摘要 ii Abstract iii 誌謝 iv Contents v 第一部分 Part One ix 摘要 x Abstract xi List of Tables xii List of Figures xiii 第二部分 Part Two xiv 摘要 xv Abstract xvi List of Tables xvii List of Figures xviii Part One: Chapter I Introduction 1 1.1 Advances in Assisted Reproductive Technologies (ART) 1 1.2 The Role of RIF in Reproductive Medicine 2 1.3 The Role of miRNA in Reproductive Functions 2 1.4 Role of miRNAs in Recurrent Implantation Failure and Potential Biomarker 4 Chapter II Materials and Methods 5 2.1 Subjects 5 2.2 Study Design 5 2.3 RNA Extraction and miRNA Enrichment 6 2.4 Complementary Deoxyribonucleic Acid Synthesis 7 2.5 miRNA Expression Analysis with PanelChip 7 2.6 Data Processing and Analysis 8 Chapter III Results 10 3.1 Identification of Differentially Expressed miRNAs 10 3.2 Determination of RIF Prediction Signature 10 3.3 Validation of RIF Prediction Signature 11 3.4 miRNA-Gene Regulatory Pathway Analysis 11 Chapter IV Discussions 12 Chapter V Conclusion 14 Reference 15 Appendix 27 Supplemental Table 1 27 Supplemental Table 2 48 Supplemental Table 3 49 Supplemental Table 4 50 Supplemental Table 5 51 Supplemental Table 6 52 Supplemental Table 7 53 Part Two: Chapter I Introduction 54 Chapter II Materials and Methods 56 2.1 Endometrial Samples 56 2.2 Ethical Approval 56 2.3 Study Design 57 2.4 RNA Extraction and miRNA Enrichment 57 2.5 cDNA Synthesis 58 2.6 miRNA Expression Analysis 58 2.7 Data Processing and Analysis 59 2.8 Model Building 61 Chapter III Results 63 3.1 Evaluation of miRNA-based Classifier’s performance 63 3.2 Analysis of Inconsistent Results 64 Chapter IV Discussions 65 Chapter V Conclusions 69 Reference 70 Appendix 81 Supplemental Table S1 81 Supplemental Table S2 82 Supplemental Table S3 117 Supplemental Figure S1 118 Supplemental Figure S2 119 Supplemental Figure S3 120 Curriculum Vitae xix

    Part One
    1. Coughlan C, Ledger W, Wang Q, Liu F, Demirol A, Gurgan T, et al. Recurrent implantation failure: definition and management. Reprod Biomed Online 2014;28:14–38.
    2. Margalioth EJ, Ben-Chetrit A, Gal M, Eldar-Geva T. Investigation and treatment of repeated implantation failure following IVF-ET. Hum Reprod 2006;21:3036–43.
    3. Tan BK, Vandekerckhove P, Kennedy R, Keay SD. Investigation and current management of recurrent IVF treatment failure in the UK. Br J Obstet Gynaecol 2005;112:773–80.
    4. Koler M, Achache H, Tsafrir A, Smith Y, Revel A, Reich R. Disrupted gene pattern in patients with repeated in vitro fertilization (IVF) failure. Hum Reprod 2009;24:2541–8.
    5. Liu SM, Zhou YZ, Wang HB, Sun ZY, Zhen JR, Shen K, et al. Factors associated with effectiveness of treatment and reproductive outcomes in patients with thin endometrium undergoing estrogen treatment. Chin Med J 2015; 128:3173–7.
    6. Navot D, Bergh PA, Williams M, Garrisi GJ, Guzman I, Sandler B, et al. An insight into early reproductive processes through the in vivo model of ovum donation. J Clin Endocrinol Metab 1991;72:408–14.
    7. Riesewijk A, Martin J, van Os R, Horcajadas JA, Polman J, Pellicer A, et al. Gene expression profiling of human endometrial receptivity on days LHt2 versus LHt7 by microarray technology. Mol Hum Reprod 2003;9:253–64.
    8. Prapas Y, Prapas N, Jones EE, Duleba AJ, Olive DL, Chatziparasidou A, et al. The window for embryo transfer in oocyte donation cycles depends on the duration of progesterone therapy. Hum Reprod 1998;13:720–3.
    9. Navot D, Scott RT, Droesch K, Veeck LL, Liu HC, Rosenwaks Z. The window of embryo transfer and the efficiency of human conception in vitro. Fertil Steril 1991;55:114–8.
    10. Navot D, Laufer N, Kopolovic J, Rabinowitz R, Birkenfeld A, Lewin A, et al. Artificially induced endometrial cycles and establishment of pregnancies in the absence of ovaries. N Engl J Med 1986;314:806–11.
    11. Sebastian-Leon P, Garrido N, Remohi J, Pellicer A, Diaz-Gimeno P. Asynchronous and pathological windows of implantation: two causes of recurrent implantation failure. Hum Reprod 2018;33:626–35.
    12. Ruiz-Alonso M, Blesa D, Diaz-Gimeno P, Gómez E, Fernández- Sánchez M, Carranza F, et al. The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure. Fertil Steril 2013;100:818–24.
    13. Ambros V. MicroRNAs: tiny regulators with great potential. Cell 2001;107:823–6.
    14. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281–97.
    15. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res 2019;47:D155–62.
    16. Hull ML, Nisenblat V. Tissue and circulating microRNA influence reproductive function in endometrial disease. Reprod Biomed Online 2013;27:515–29.
    17. Galliano D, Pellicer A. MicroRNA and implantation. Fertil Steril 2014;101:1531–44.
    18. Liu W, Niu Z, Li Q, Pang RT, Chiu PC, Yeung WS. MicroRNA and embryo implantation. Am J Reprod Immunol 2016;75:263–71.
    19. Shi C, Shen H, Fan LJ, Guan J, Zheng XB, Chen X, et al. Endometrial micro-RNA signature during the window of implantation changed in patients with repeated implantation failure. Chin Med J 2017;130:566–73.
    20. Kresowik JD, Devor EJ, Van Voorhis BJ, Leslie KK. MicroRNA-31 is significantly elevated in both human endometrium and serum during the window of implantation: a potential biomarker for optimum receptivity. Biol Reprod 2014;91:17.
    21. Li L, Gou J, Yi T, Li Z. MicroRNA-30a-3p regulates epithelial- mesenchymal transition to affect embryo implantation by targeting Snai2. Biol Reprod 2019;100:1171–9.
    22. Liang J, Wang S, Wang Z. Role of microRNAs in embryo implantation. Reprod Biol Endocrinol 2017;15:90.
    23. Paul ABM, Sadek ST, Mahesan AM. The role of microRNAs in human embryo implantation: a review. J Assist Reprod Genet 2019;36:179–87.
    24. Vilella F, Moreno-Moya JM, Balaguer N, Grasso A, Herrero M, Martinez S, et al. Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome. Development 2015;142:3210–21.
    25. Zheng Q, Zhang D, Yang YU, Cui X, Sun J, Liang C, et al. MicroRNA- 200c impairs uterine receptivity formation by targeting FUT4 and alpha1,3-fucosylation. Cell Death Differ 2017;24:2161–72.
    26. Kang ST, Hsieh YS, Feng CT, Chen YT, Yang PE, Chen WM. miPrimer: an empirical-based qPCR primer design method for small noncoding micro-RNA. RNA 2018;24:304–12.
    27. Hsieh CH, Chen WM, Hsieh YS, Fan YC, Yang PE, Kang ST, et al. A novel multi-gene detection platform for the analysis of miRNA expression. Sci Rep 2018;8:10684.
    28. Schriml LM, Mitraka E, Munro J, Tauber B, Schor M, Nickle L, et al. Human Disease Ontology 2018 update: classification, content and workflow expansion. Nucleic Acids Res 2019;47:D955–62.
    29. Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, et al. miRTarBase 2020: updates to the experimentally validated microRNA- target interaction database. Nucleic Acids Res 2020;48:D148–54.
    30. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015;4.
    31. Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 2020;48:D127–31.
    32. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003;19:185–93.
    33. Li J, Liu D, Wang J, Deng H, Luo X, Shen X, et al. Meta-analysis identifies candidate key genes in endometrium as predictive biomarkers for clinical pregnancy in IVF. Oncotarget 2017;8:102428–36.
    34. Díaz -Gimeno P, Horcajadas JA, Martínez -Conejero JA, Esteban FJ, Alamá P, Pellicer A, et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril 2011;95:50–60.e1–15.
    35. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498–504.
    36. Whitby S, Salamonsen LA, Evans J. The endometrial polarity paradox: differential regulation of polarity within secretory-phase human endometrium. Endocrinology 2018;159:506–18.
    37. Singh M, Chaudhry P, Asselin E. Bridging endometrial receptivity and implantation: network of hormones, cytokines, and growth factors. J Endocrinol 2011;210:5–14.
    38. Wong N,Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 2015;43:D146– 52.
    39. Liu Y, Kodithuwakku SP, Ng PY, Chai J, Ng EH, Yeung WS, et al. Excessive ovarian stimulation up-regulates the Wnt-signaling molecule DKK1 in human endometrium and may affect implantation: an in vitro co- culture study. Hum Reprod 2010;25:479–90.
    40. Ben-Hamo R, Efroni S. MicroRNA regulation of molecular pathways as a generic mechanism and as a core disease phenotype. Oncotarget 2015;6:1594–604.
    41. Liao R, Lin Y, Zhu L. Molecular pathways involved in microRNA- mediated regulation of multidrug resistance. Mol Biol Rep 2018;45:2913– 23.
    42. Coenen-Stass AML, Magen I, Brooks T, Ben-Dov IZ, Greensmith L, Hornstein E, et al. Evaluation of methodologies for microRNA biomarker detection by next generation sequencing. RNA Biol 2018;15:1133–45.
    43. Mestdagh P, Hartmann N, Baeriswyl L, Andreasen D, Bernard N, Chen C, et al. Evaluation of quantitative miRNA expression platforms in the micro-RNA quality control (miRQC) study. Nat Methods 2014;11:809–15.
    44. Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, et al. Systematic comparison of microarray profiling, real-time PCR, and nextgeneration sequencing technologies for measuring differential microRNA expression. RNA 2010;16:991–1006.
    45. Raabe CA, Tang TH, Brosius J, Rozhdestvensky TS. Biases in small RNA deep sequencing data. Nucleic Acids Res 2014;42:1414–26.
    46. Jayaprakash AD, Jabado O, Brown BD, Sachidanandam R. Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res 2011;39:e141.
    47. Fuchs RT, Sun Z, Zhuang F, Robb GB. Bias in ligation-based small RNA sequencing library construction is determined by adaptor and RNA structure. PLoS One 2015;10:e0126049.
    48. Linsen SE, de Wit E, Janssens G, Heater S, Chapman L, Parkin RK, et al. Limitations and possibilities of small RNA digital gene expression profiling. Nat Methods 2009;6:474–6.
    49. Backes C, Sedaghat-Hamedani F, Frese K, Hart M, Ludwig N, Meder B, et al. Bias in high-throughput analysis of miRNAs and implications for biomarker studies. Anal Chem 2016;88:2088–95.
    50. Ouyang Y, Mouillet JF, Coyne CB, Sadovsky Y. Review: placenta- specific microRNAs in exosomes-good things come in nano-packages. Placenta 2014;35(Suppl):S69–73.
    51. Mong EF, Yang Y, Akat KM, Canfield J, VanWye J, Lockhart J, et al. Chromosome 19 microRNA cluster enhances cell reprogramming by inhibiting epithelial-to-mesenchymal transition. Sci Rep 2020;10:3029.
    52. Noguer-Dance M, Abu-Amero S, Al-Khtib M, Lefèvre A, Coullin P, Moore GE, et al. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet 2010;19:3566–82

    Part Two
    1. Ombelet, W.; Cooke, I.; Dyer, S.; Serour, G.; Devroey, P. Infertility and the provision of infertility medical services in developing countries. Hum. Reprod. Update 2008, 14, 605–621. https://doi.org/10.1093/humupd/dmn042.
    2. Timeva, T.; Shterev, A.; Kyurkchiev, S. Recurrent implantation failure: The role of the endometrium. J. Reprod. Infertil. 2014, 15, 173–183.
    3. Su, R.W.; Fazleabas, A.T. Implantation and Establishment of Pregnancy in Human and Nonhuman Primates. In Regulation of Implantation and Establishment of Pregnancy in Mammals; Advances in Anatomy, Embryology and Cell Biology; Springer: Cham, Switzerland, 2015; Volume 216, pp. 189–213. https://doi.org/10.1007/978-3-319-15856-3_10.
    4. Lessey, B.A. Assessment of endometrial receptivity. Fertil. Steril. 2011, 96, 522–529. https://doi.org/10.1016/j.fertnstert.2011.07.1095.
    5. Sebastian-Leon, P.; Garrido, N.; Remohi, J.; Pellicer, A.; Diaz-Gimeno, P. Asynchronous and pathological windows of implantation: Two causes of recurrent implantation failure. Hum. Reprod. 2018, 33, 626–635. https://doi.org/10.1093/humrep/dey023.
    6. Mahajan, N.; Kaur, S.; Alonso, M.R. Window of Implantation is Significantly Displaced in Patients with Adenomyosis with Previous Implantation Failure as Determined by Endometrial Receptivity Assay. J. Hum. Reprod. Sci. 2018, 11, 353–358. https://doi.org/10.4103/jhrs.JHRS_52_18.
    7. Acosta, A.A.; Elberger, L.; Borghi, M.; Calamera, J.C.; Chemes, H.; Doncel, G.F.; Kliman, H.; Lema, B.; Lustig, L.; Papier, S. Endometrial dating and determination of the window of implantation in healthy fertile women. Fertil. Steril. 2000, 73, 788–798. https://doi.org/10.1016/s0015-0282(99)00605-6.
    8. Alcazar, J.L. Three-dimensional ultrasound assessment of endometrial receptivity: A review. Reprod. Biol. Endocrinol. 2006, 4, 56. https://doi.org/10.1186/1477-7827-4-56.
    9. Child, T.J.; Gulekli, B.; Sylvestre, C.; Tan, S.L. Ultrasonographic assessment of endometrial receptivity at embryo transfer in an in vitro maturation of oocyte program. Fertil. Steril. 2003, 79, 656–658. https://doi.org/10.1016/s0015-0282(02)04811-2.
    10. Kupesic, S.; Bekavac, I.; Bjelos, D.; Kurjak, A. Assessment of endometrial receptivity by transvaginal color Doppler and three-dimensional power Doppler ultrasonography in patients undergoing in vitro fertilization procedures. J. Ultrasound. Med. 2001, 20, 125–134. https://doi.org/10.7863/jum.2001.20.2.125.
    11. Lilic, V.; Tubic-Pavlovic, A.; Radovic-Janosevic, D.; Petric, A.; Stefanovic, M.; Zivadinovic, R. Assessment of endometrial receptivity by color Doppler and ultrasound imaging. Med. Pregl. 2007, 60, 237–240. https://doi.org/10.2298/mpns0706237l.
    12. Check, J.H.; Lurie, D.; Dietterich, C.; Callan, C.; Baker, A. Adverse effect of a homogeneous hyperechogenic endometrial sonographic pattern, despite adequate endometrial thickness on pregnancy rates following in-vitro fertilization. Hum. Re-prod. 1993, 8, 1293–1296. https://doi.org/10.1093/oxfordjournals.humrep.a138244.
    13. Coulam, C.B.; Bustillo, M.; Soenksen, D.M.; Britten, S. Ultrasonographic predictors of implantation after assisted reproduc-tion. Fertil. Steril. 1994, 62, 1004–1010. https://doi.org/10.1016/s0015-0282(16)57065-4.
    14. Schild, R.L.; Indefrei, D.; Eschweiler, S.; Van der Ven, H.; Fimmers, R.; Hansmann, M. Three-dimensional endometrial vol-ume calculation and pregnancy rate in an in-vitro fertilization programme. Hum. Reprod. 1999, 14, 1255–1258. https://doi.org/10.1093/humrep/14.5.1255.
    15. Ueno, J.; Oehninger, S.; Brzyski, R.G.; Acosta, A.A.; Philput, C.B.; Muasher, S.J. Ultrasonographic appearance of the endometrium in natural and stimulated in-vitro fertilization cycles and its correlation with outcome. Hum. Reprod. 1991, 6, 901–904. https://doi.org/10.1093/oxfordjournals.humrep.a137455.
    16. Lindhard, A.; Ravn, V.; Bentin-Ley, U.; Horn, T.; Bangsboell, S.; Rex, S.; Toft, B.; Soerensen, S. Ultrasound characteristics and histological dating of the endometrium in a natural cycle in infertile women compared with fertile controls. Fertil. Steril. 2006, 86, 1344–1355. https://doi.org/10.1016/j.fertnstert.2006.03.052.
    17. Brosens, J.J.; Salker, M.S.; Teklenburg, G.; Nautiyal, J.; Salter, S.; Lucas, E.S.; Steel, J.H.; Christian, M.; Chan, Y.W.; Boomsma, C.M.; et al. Uterine selection of human embryos at implantation. Sci. Rep. 2014, 4, 3894. https://doi.org/10.1038/srep03894.
    18. Diaz-Gimeno, P.; Horcajadas, J.A.; Martinez-Conejero, J.A.; Esteban, F.J.; Alama, P.; Pellicer, A.; Simon, C. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil. Steril. 2011, 95, 50–60.e15. https://doi.org/10.1016/j.fertnstert.2010.04.063.
    19. Kao, L.C.; Tulac, S.; Lobo, S.; Imani, B.; Yang, J.P.; Germeyer, A.; Osteen, K.; Taylor, R.N.; Lessey, B.A.; Giudice, L.C. Global gene profiling in human endometrium during the window of implantation. Endocrinology 2002, 143, 2119–2138. https://doi.org/10.1210/endo.143.6.8885.
    20. Tang, F.H.; Chang, W.A.; Tsai, E.M.; Tsai, M.J.; Kuo, P.L. Investigating Novel Genes Potentially Involved in Endometrial Adenocarcinoma using Next-Generation Sequencing and Bioinformatic Approaches. Int. J. Med. Sci. 2019, 16, 1338–1348. https://doi.org/10.7150/ijms.38219.
    21. Kulkarni, P.; Frommolt, P. Challenges in the Setup of Large-scale Next-Generation Sequencing Analysis Workflows. Comput. Struct. Biotechnol. J. 2017, 15, 471–477. https://doi.org/10.1016/j.csbj.2017.10.001.
    22. Di Resta, C.; Ferrari, M. Next Generation Sequencing: From Research Area to Clinical Practice. EJIFCC 2018, 29, 215–220.
    23. Simoneau, J.; Dumontier, S.; Gosselin, R.; Scott, M.S. Current RNA-seq methodology reporting limits reproducibility. Brief. Bioinform. 2021, 22, 140–145. https://doi.org/10.1093/bib/bbz124.
    24. Mandelboum, S.; Manber, Z.; Elroy-Stein, O.; Elkon, R. Recurrent functional misinterpretation of RNA-seq data caused by sample-specific gene length bias. PLOS Biol. 2019, 17, e3000481. https://doi.org/10.1371/journal.pbio.3000481.
    25. Liang, J.; Wang, S.; Wang, Z. Role of microRNAs in embryo implantation. Reprod. Biol. Endocrinol. 2017, 15, 90. https://doi.org/10.1186/s12958-017-0309-7.
    26. Garrido-Gomez, T.; Ruiz-Alonso, M.; Blesa, D.; Diaz-Gimeno, P.; Vilella, F.; Simon, C. Profiling the gene signature of endometrial receptivity: Clinical results. Fertil. Steril. 2013, 99, 1078–1085. https://doi.org/10.1016/j.fertnstert.2012.12.005.
    27. Gregory, P.A.; Bert, A.G.; Paterson, E.L.; Barry, S.C.; Tsykin, A.; Farshid, G.; Vadas, M.A.; Khew-Goodall, Y.; Goodall, G.J. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 2008, 10, 593–601. https://doi.org/10.1038/ncb1722.
    28. Korpal, M.; Lee, E.S.; Hu, G.; Kang, Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 2008, 283, 14910–14914. https://doi.org/10.1074/jbc.C800074200.
    29. Lam, E.W.; Shah, K.; Brosens, J.J. The diversity of sex steroid action: The role of micro-RNAs and FOXO transcription factors in cycling endometrium and cancer. J. Endocrinol. 2012, 212, 13–25. https://doi.org/10.1530/JOE-10-0480.
    30. Kang, Y.J.; Lees, M.; Matthews, L.C.; Kimber, S.J.; Forbes, K.; Aplin, J.D. MiR-145 suppresses embryo-epithelial juxtacrine communication at implantation by modulating maternal IGF1R. J. Cell Sci. 2015, 128, 804–814. https://doi.org/10.1242/jcs.164004.
    31. Altmae, S.; Martinez-Conejero, J.A.; Esteban, F.J.; Ruiz-Alonso, M.; Stavreus-Evers, A.; Horcajadas, J.A.; Salumets, A. Mi-croRNAs miR-30b, miR-30d, and miR-494 regulate human endometrial receptivity. Reprod. Sci. 2013, 20, 308–317. https://doi.org/10.1177/1933719112453507.
    32. Revel, A.; Achache, H.; Stevens, J.; Smith, Y.; Reich, R. MicroRNAs are associated with human embryo implantation defects. Hum. Reprod. 2011, 26, 2830–2840. https://doi.org/10.1093/humrep/der255.
    33. Shi, C.; Shen, H.; Fan, L.J.; Guan, J.; Zheng, X.B.; Chen, X.; Liang, R.; Zhang, X.W.; Cui, Q.H.; Sun, K.K.; et al. Endometrial MicroRNA Signature during the Window of Implantation Changed in Patients with Repeated Implantation Failure. Chin. Med. J. 2017, 130, 566–573. https://doi.org/10.4103/0366-6999.200550.
    34. Chen, C.H.; Lu, F.; Yang, W.J.; Yang, P.E.; Chen, W.M.; Kang, S.T.; Huang, Y.S.; Kao, Y.C.; Feng, C.T.; Chang, P.C.; et al. A novel platform for discovery of differentially expressed microRNAs in patients with repeated implantation failure. Fertil. Steril. 2021, 116, 181–188. https://doi.org/10.1016/j.fertnstert.2021.01.055.
    35. Kang, S.T.; Hsieh, Y.S.; Feng, C.T.; Chen, Y.T.; Yang, P.E.; Chen, W.M. miPrimer: An empirical-based qPCR primer design method for small noncoding microRNA. RNA 2018, 24, 304–312. https://doi.org/10.1261/rna.061150.117.
    36. Hsieh, C.H.; Chen, W.M.; Hsieh, Y.S.; Fan, Y.C.; Yang, P.E.; Kang, S.T.; Liao, C.T. A Novel Multi-Gene Detection Platform for the Analysis of miRNA Expression. Sci. Rep. 2018, 8, 10684. https://doi.org/10.1038/s41598-018-29146-7.
    37. Bolstad, B.M.; Irizarry, R.A.; Astrand, M.; Speed, T.P. A comparison of normalization methods for high-density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19, 185–193. https://doi.org/10.1093/bioinformatics/19.2.185.
    38. Mestdagh, P.; Hartmann, N.; Baeriswyl, L.; Andreasen, D.; Bernard, N.; Chen, C.; Cheo, D.; D’Andrade, P.; DeMayo, M.; Dennis, L.; et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat. Methods 2014, 11, 809–815. https://doi.org/10.1038/nmeth.3014.
    39. Pechenizkiy, M.; Tsymbal, A.; Puuronen, S. PCA-Based Feature Transformation for Classification: Issues in Medical Diagnostics. In Proceedings of the 17th IEEE Symposium on Computer-Based Medical Systems, Bethesda, MD, USA, 25 June 2004; pp. 535–540. https://doi.org/10.1109/Cbms.2004.1311770.
    40. Zou, H.; Hastie, T. Regularization and variable selection via the Elastic Net. J. R. Stat. Soc. Ser. B 2005, 67, 20.
    41. Huang, H.Y.; Lin, Y.C.; Li, J.; Huang, K.Y.; Shrestha, S.; Hong, H.C.; Tang, Y.; Chen, Y.G.; Jin, C.N.; Yu, Y.; et al. miRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 2020, 48, D148–D154. https://doi.org/10.1093/nar/gkz896.
    42. Kaya, I.E.; Pehlivanli, A.C.; Sekizkardes, E.G.; Ibrikci, T. PCA based clustering for brain tumor segmentation of T1w MRI images. Comput. Methods Programs Biomed 2017, 140, 19–28. https://doi.org/10.1016/j.cmpb.2016.11.011.
    43. Carbon, S.; Ireland, A.; Mungall, C.J.; Shu, S.; Marshall, B.; Lewis, S.; Ami, G.O.H.; Web Presence Working, G. AmiGO: Online access to ontology and annotation data. Bioinformatics 2009, 25, 288–289. https://doi.org/10.1093/bioinformatics/btn615.
    44. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. https://doi.org/10.1101/gr.1239303.
    45. Herington, J.L.; Guo, Y.; Reese, J.; Paria, B.C. Gene profiling the window of implantation: Microarray analyses from human and rodent models. J. Reprod. Health Med. 2016, 2, S19–S25. https://doi.org/10.1016/j.jrhm.2016.11.006.
    46. Cho, K.; Tan, S.; Buckett, W.; Dahan, M.H. Intra-patient variability in the endometrial receptivity assay (ERA) test. J. Assist. Reprod. Genet. 2018, 35, 929–930. https://doi.org/10.1007/s10815-018-1125-5.
    47. Abdallah, Y.; Naji, O.; Saso, S.; Pexsters, A.; Stalder, C.; Sur, S.; Raine-Fenning, N.; Timmerman, D.; Brosens, J.J.; Bourne, T. Ultrasound assessment of the peri-implantation uterus: A review. Ultrasound Obstet. Gynecol. 2012, 39, 612–619. https://doi.org/10.1002/uog.10098.
    48. Copois, V.; Bibeau, F.; Bascoul-Mollevi, C.; Salvetat, N.; Chalbos, P.; Bareil, C.; Candeil, L.; Fraslon, C.; Conseiller, E.; Granci, V.; et al. Impact of RNA degradation on gene expression profiles: Assessment of different methods to reliably determine RNA quality. J. Biotechnol. 2007, 127, 549–559. https://doi.org/10.1016/j.jbiotec.2006.07.032.
    49. Fleige, S.; Pfaffl, M.W. RNA integrity and the effect on the real-time qRT-PCR performance. Mol. Aspects Med. 2006, 27, 126–139. https://doi.org/10.1016/j.mam.2005.12.003.
    50. Peiro-Chova, L.; Pena-Chilet, M.; Lopez-Guerrero, J.A.; Garcia-Gimenez, J.L.; Alonso-Yuste, E.; Burgues, O.; Lluch, A.; Fer-rer-Lozano, J.; Ribas, G. High stability of microRNAs in tissue samples of compromised quality. Virchows Arch. 2013, 463, 765–774. https://doi.org/10.1007/s00428-013-1485-2.
    51. Opitz, L.; Salinas-Riester, G.; Grade, M.; Jung, K.; Jo, P.; Emons, G.; Ghadimi, B.M.; Beissbarth, T.; Gaedcke, J. Impact of RNA degradation on gene expression profiling. BMC Med. Genom. 2010, 3, 36. https://doi.org/10.1186/1755-8794-3-36.
    52. Tan, J.; Kan, A.; Hitkari, J.; Taylor, B.; Tallon, N.; Warraich, G.; Yuzpe, A.; Nakhuda, G. The role of the endometrial receptiv-ity array (ERA) in patients who have failed euploid embryo transfers. J. Assist. Reprod. Genet. 2018, 35, 683–692. https://doi.org/10.1007/s10815-017-1112-2.
    53. Bashiri, A.; Halper, K.I.; Orvieto, R. Recurrent Implantation Failure-update overview on etiology, diagnosis, treatment and future directions. Reprod. Biol. Endocrinol. 2018, 16, 121. https://doi.org/10.1186/s12958-018-0414-2.

    QR CODE