簡易檢索 / 詳目顯示

研究生: 蔡欣穆
Tsai, Shin-Mu
論文名稱: 利用微波輔助水熱法製備鈦酸鹽奈米管/銅氧化物異質接面提昇雙酚A可見光催化活性
Preparation of titanate nanotube/copper oxide heterojunction for enhanced visible light-driven photoactivity towards bisphenol A degradation using microwave assisted hydrothermal method
指導教授: 董瑞安
Doong, Ruey-An
口試委員: 盧重興
黃金寶
吳劍侯
張淑閔
董瑞安
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 144
中文關鍵詞: 鈦酸鹽奈米管微波轉相氧化亞銅p-n異質接面光觸媒雙酚A
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的在於利用鈦酸鹽奈米管具有高陽離子吸附及半導體光催化特性,以微波輔助濕式水熱法製備銅氧化物/鈦酸鹽奈米管衍生anatase TiO2奈米異質接面複合材料,藉由異質接面降低電子電洞對再結合速率,並利用銅氧化物窄帶半導體提昇可見光吸收特性,以促進光觸媒材料對環境新興污染物之光催化活性與可見光波長利用性。在材料的製備上,利用鹼性水熱法在0.1 M NaOH製備奈米管組成鈦酸鹽中空球體或2.6 M NH4OH製備氮參雜奈米管組成鈦酸鹽中空球體,發現利用鹼性水熱法所合成的鈦酸鹽奈米材料結構,隨著水熱溫度由120°C升高至180°C,鈦酸鹽球體表面逐漸由片狀結構轉變為管狀結構,而水熱鈦酸鹽比表面積介於101~134 m2/g間。透過等溫吸附實驗瞭解鈦酸鹽對Cu2+離子的吸附容量與行為,得知鈦酸鹽於1小時內達到吸附平衡,等溫吸附行為可以Freundlich吸附模式模擬,吸附容量約在100 mg Cu2+/g-鈦酸鹽。研究中同時利用Cu2+離子吸附鈦酸鹽製備0.7~6.9wt% Cu2O/TiO2-TNT光觸媒複合材料,並利用用微波輔助濕式化學法,以簡單快速的方式同時達到鈦酸鹽晶相轉換與銅氧化物沉積,以形成奈米異質接面複合材料。微波過程中,隨著溫度由60°C增加到150°C,鈦酸鹽晶相能大幅度轉換為anatase TiO2,利用 X-光光電子能譜儀進行複合材料銅元素鍵結型態鑑定分析,確定在微波輔助處理下,銅氧化物以Cu2O形式存在。
    光催化研究中探討0.7~6.9wt% Cu2O/ TiO2-TNT奈米異質接面複合材料對新興污染物雙酚A (Bisphenol A, BPA)之降解效率,發現150°C微波20分鐘所得3.7wt% Cu2O/ TiO2-TNT擁有最佳的反應速率與較低銅離子濃度釋出的優勢,Cu2O複合材料對BPA降解之擬一階反應速率常數(kobs)為TiO2-TNT的24倍,且在365 nm UV照射下,能在15分鐘內完全降解10 mg/L BPA,其kobs為0.136 min-1,較P25 TiO2光降解BPA的反應速率常數值高出5.7倍。而在465 nm藍光LED可見光照射下,3.7wt% Cu2O/ TiO2-TNT 依然能在3小時內完全降解10 mg/L BPA,其kobs可達0.0078 min-1。pH值為影響複合材料光降解BPA的環境參數之一,在pH 4~9的水體環境中,BPA的擬一階反應速率常數值為pH3.9 < pH5.3≒pH6.0≒pH7.3 < pH9.1,最低與最高反應速率相差3倍;此外,BPA降解符合Langmuir-Hinshelwood動力式,表示BPA降解與光觸媒表面活性位址具正相關性。最後將3.7wt% Cu2O/ TiO2-TNT複合材料進行回收使用測試,研究發現在465 nm藍光LED照射下經5次回收再使用實驗,Cu2O/TiO2-TNT複合材料依舊能維持材料效能,表示本研究材料具多次回收使用性。並由EPR自由基共振圖譜得知,當Cu2O與anatase TiO2複合後,因能階配對改變半導體物理特性,導致一開始產生的氫氧自由基(•OH)轉變為單重態氧激發態(1O2),證實異質接面系統中,p-n接面確實產生作用,顯示本研究可成功製備Cu2O/ TiO2-TNT異質接面奈米複合材料,並達到提升光觸媒材料催化活性與可見光利用性的目的。


    第一章 簡介 1-1 前言 1-2 研究動機 1-3 研究目的 第二章 文獻回顧 2-1 鈦酸鹽材料 2-1-1 鈦酸鹽奈米管晶體結構 2-1-2 鈦酸鹽奈米管形成機制 2-1-3 鈦酸鹽奈米管水熱合成條件 2-1-4 管狀鈦酸鹽組成之中空球體 2-2 微波轉相 2-2-1 鈦酸鹽轉相為anatase TiO2 (450°C鍛燒v.s. 濕式化學方法) 2-3 p-n奈米異質接面 2-3-1 奈米異質接面於環境應用優勢 2-3-2異質接面能階配對型式 2-3-3光催應用異質接面的選擇 2-4 銅氧化物之複合 2-4-1 銅氧化物與TiO2複合材料 2-4-2 弱酸環境下微波複合銅氧化物物種變化 2-5 光觸媒複合材於水處理之應用 2-5-1 內分泌干擾物質(EDCs) 2-5-2 Bisphenol A環境處理技術 第三章 實驗材料與方法 3-1 實驗藥品 3-2 實驗架構 3-3 鈦酸鹽奈米管合成 3-4 微波輔助轉相同步複合銅氧化物 3-5 特性鑑定 3-5-1 X光粉末繞射儀 (XRD) 3-5-2掃描式電子顯微鏡 (SEM) 3-5-3穿透式電子顯微鏡 (TEM) 3-5-4 BET比表面積儀 (BET) 3-5-5 電子能譜儀 (XPS) 3-5-6 感應耦合電漿發射光譜 (ICP-OES) 3-5-7 電子微探分析儀 (EPMA) 3-5-8 紫外光-可見光分光光譜儀 (UV-Vis) 3-5-9 電子順磁共振光譜儀 (EPR) 3-6 鈦酸鹽之應用—吸附與光催化實驗 3-6-1 等溫吸附實驗 3-6-2 光催化實驗 3-6-3 光催化實驗環境污染物之光催化反應速率推求 第四章 結果與討論 4-1 鈦酸鹽材料特性鑑定 4-1-1 不同水熱溫度下的結晶相與形貌 4-1-2 不同鹼環境下的結晶相與形貌 4-1-3 BET比表面積 4-2 等溫吸附實驗 4-2-1 吸附平衡時間 4-2-2 鈦酸鹽對Cu2+等溫吸附曲線 4-3 微波轉相與金屬氧化物沉積 4-3-1 微波之溫度與時間對濕式轉晶相探討 4-3-2 Cu2+離子吸附對微波濕式轉晶相影響探討 4-3-3 銅氧化物於複合材料中含量分析 4-3-4 銅氧化物於微波下之形成與物種鑑定 4-4 光催化活性 4-4-1 微波處理對光催化活性提升之探討 4-4-2 銅氧化物最適量條件探討 4-4-3 可見光下光催化活性 4-4-4 水體環境參數對光催化效率之探討 4-5 電子順磁共振光譜之探討 4-5-1 異質接面產生之自由基差異 4-5-2 Cu2O/anatase TiO2 p-n異質接面作用機制 第五章 結論 5-1 鈦酸鹽奈米管合成 5-2 鈦酸鹽奈米管衍生之Cu2O/ TiO2-TNT異質接面材料 5-3 Cu2O/ TiO2-TNT異質接面材料光催化應用 Appendix References

    1.Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Formation of Titanium Oxide Nanotube. Langmuir 1998, 14, (12), 3160-3163.
    2.Yamada, M.; Wei, M. D.; Honma, I.; Zhou, H. S., One-dimensional proton conductor under high vapor pressure condition employing titanate nanotube. Electrochem. Commun. 2006, 8, (9), 1549-1552.
    3.Bavykin, D. V.; Walsh, F. C., Elongated Titanate Nanostructures and Their Applications. Eur J Inorg Chem 2009, (8), 977-997.
    4.Zhang, J.; Zhang, J.; Jin, Z.; Wu, Z.; Zhang, Z., Electrochemical lithium storage capacity of nickel mono-oxide loaded anatase titanium dioxide nanotubes. Ionics 2012, 18, 861-866.
    5.Nie, X. T.; Teh, Y. L., Titanate nanotubes as superior adsorbents for removal of lead(II) ions from water. Mater Chem Phys 2010, 123, (2-3), 494-497.
    6.Kitano, M.; Nakajima, K.; Kondo, J. N.; Hayashi, S.; Hara, M., Protonated Titanate Nanotubes as Solid Acid Catalyst. J Am Chem Soc 2010, 132, (19), 6622-6623.
    7.Hu, W. B.; Li, L. P.; Li, G. S.; Meng, J.; Tong, W. M., Synthesis of Titanate-Based Nanotubes for One-Dimensionally Confined Electrical Properties. J Phys Chem C 2009, 113, (39), 16996-17001.
    8.Li, J. Q.; Wang, D. F.; He, Z. L.; Zhu, Z. F., Controlled Synthesis of Hierarchically Mesoporous TiO2 Hollow Microspheres with High Photocatalytic Activity. Journal of the American Ceramic Society 2011, 94, (9), 3151-3151.
    9.Varley, J. B.; Janotti, A.; Van de Walle, C. G., Mechanism of Visible-Light Photocatalysis in Nitrogen-Doped TiO2. Advanced Materials 2011, 23, (20), 2343-2347.
    10.Sah, C. T.; Noyce, R. N.; Shockley, W., Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics. Proceedings of The Ire 1957, 45, (9), 1228-1243.
    11.Linsebigler, A. L.; Lu, G. Q.; Yates, J. T., Photocatalysis on TiO2 Surfaces - Principles, Mechanisms, and Selected Results. Chem Rev 1995, 95, (3), 735-758.
    12.Andersson, S.; Wadsley, A. D., The structures of Na2Ti6O13 and Rb2Ti6O13 and the alkali metal titanates. Acta Crystallographica 1962, 15, (3), 194-201.
    13.Clearfield, A.; Lehto, J., Preparation, Structure, and Ion-Exchange Properties of Na4Ti9O20•XH2O. J Solid State Chem 1988, 73, (1), 98-106.
    14.Yang, J. J.; Jin, Z. S.; Wang, X. D.; Li, W.; Zhang, J. W.; Zhang, S. L.; Guo, X. Y.; Zhang, Z. J., Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton T 2003, (20), 3898-3901.
    15.Sun, X. M.; Li, Y. D., Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem-Eur J 2003, 9, (10), 2229-2238.
    16.Ma, R. Z.; Bando, Y.; Sasaki, T., Nanotubes of lepidocrocite titanates. Chem Phys Lett 2003, 380, (5-6), 577-582.
    17.Suzuki, Y.; Yoshikawa, S., Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method. J Mater Res 2004, 19, (4), 982-985.
    18.Burdett, J. K.; Hughbanks, T.; Miller, G. J.; Richardson, J. W.; Smith, J. V., Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J Am Chem Soc 1987, 109, (12), 3639-3646.
    19.Fahmi, A.; Minot, C.; Silvi, B.; Causá, M., Theoretical analysis of the structures of titanium dioxide crystals. Physical Review B 1993, 47, (18), 11717-11724.
    20.Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Titania Nanotubes Prepared by Chemical Processing. Advanced Materials 1999, 11, (15), 1307-1311.
    21.Thorne, A.; Kruth, A.; Tunstall, D.; Irvine, J. T. S.; Zhou, W., Formation, Structure, and Stability of Titanate Nanotubes and Their Proton Conductivity. The Journal of Physical Chemistry B 2005, 109, (12), 5439-5444.
    22.Kitano, M.; Nakajima, K.; Kondo, J. N.; Hayashi, S.; Hara, M., Protonated Titanate Nanotubes as Solid Acid Catalyst. J Am Chem Soc 2010, 132, (19), 6622-+.
    23.Wei, M.; Konishi, Y.; Zhou, H.; Sugihara, H.; Arakawa, H., Formation of nanotubes TiO2 from layered titanate particles by a soft chemical process. Solid State Communications 2005, 133, (8), 493-497.
    24.Tan, Y. F.; Yang, L.; Chen, J. Z.; Qiu, Z., Facile Fabrication of Hierarchical Hollow Microspheres Assembled by Titanate Nanotubes. Langmuir 2010, 26, (12), 10111-10114.
    25.Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.; Walsh, F. C., The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry 2004, 14, (22), 3370-3377.
    26.Jitputti, J.; Rattanavoravipa, T.; Chuangchote, S.; Pavasupree, S.; Suzuki, Y.; Yoshikawa, S., Low temperature hydrothermal synthesis of monodispersed flower-like titanate nanosheets. Catalysis Communications 2009, 10, (4), 378-382.
    27.Zhu, H. Y.; Lan, Y.; Gao, X. P.; Ringer, S. P.; Zheng, Z. F.; Song, D. Y.; Zhao, J. C., Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. J Am Chem Soc 2005, 127, (18), 6730-6736.
    28.Liu, H. W.; Waclawik, E. R.; Zheng, Z. F.; Yang, D. J.; Ke, X. B.; Zhu, H. Y.; Frost, R. L., TEM Investigation and FBB Model Explanation to the Phase Relationships between Titanates and Titanium Dioxides. J Phys Chem C 2010, 114, (26), 11430-11434.
    29.Liu, H. W.; Zheng, Z.; Yang, D. J.; Ke, X. B.; Jaatinen, E.; Zhao, J. C.; Zhu, H. Y., Coherent Interfaces between Crystals in Nanocrystal Composites. ACS Nano 2010, 4, (10), 6219-6227.
    30.Long, M.; Cai, W. M.; Cai, J.; Zhou, B. X.; Chai, X. Y.; Wu, Y. H., Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J Phys Chem B 2006, 110, (41), 20211-20216.
    31.Waldner, G.; Krysa, J., Photocurrents and degradation rates on particulate TiO2 layers effect of layer thickness, concentration of oxidizable substance and illumination direction. Electrochim Acta 2005, 50, (22), 4498-4504.
    32.Liang, Z. H.; Zhu, Y. J., Microwave-assisted synthesis of single-crystalline CuO nanoleaves. Chemistry Letters 2004, 33, (10), 1314-1315.
    33.Yin, M.; Wu, C. K.; Lou, Y. B.; Burda, C.; Koberstein, J. T.; Zhu, Y. M.; O'Brien, S., Copper oxide nanocrystals. J Am Chem Soc 2005, 127, (26), 9506-9511.
    34.Balamurugan, B.; Aruna, I.; Mehta, B. R.; Shivaprasad, S. M., Size-dependent conductivity-type inversion in Cu2O nanoparticles. Physical Review B 2004, 69, (16).
    35.Jin, Z. L.; Zhang, X. J.; Li, Y. X.; Li, S. B.; Lu, G. X., 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catalysis Communications 2007, 8, (8), 1267-1273.
    36.Bessekhouad, Y.; Robert, D.; Weber, J. V., Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catalysis Today 2005, 101, (3-4), 315-321.
    37.OsseoAsare, K.; Mishra, K. K., Solution chemical constraints in the chemical-mechanical polishing of copper:aqueous stability diagrams for the Cu-H2O and Cu-NH3-H2O systems. J Electron Mater 1996, 25, (10), 1599-1607.
    38.Xu, L. P.; Sithambaram, S.; Zhang, Y. S.; Chen, C. H.; Jin, L.; Joesten, R.; Suib, S. L., Novel Urchin-like CuO Synthesized by a Facile Reflux Method with Efficient Olefin Epoxidation Catalytic Performance. Chemistry of Materials 2009, 21, (7), 1253-1259.
    39.Staples, C. A.; Dorn, P. B.; Klecka, G. M.; O'Block, S. T.; Harris, L. R., A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 1998, 36, (10), 2149-2173.
    40.Tsai, C. C.; Teng, H. S., Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chemistry of Materials 2006, 18, (2), 367-373.
    41.Li, H. X.; Bian, Z. F.; Zhu, J.; Zhang, D. Q.; Li, G. S.; Huo, Y. N.; Li, H.; Lu, Y. F., Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. J Am Chem Soc 2007, 129, (27), 8406-+.
    42.Wu, C. K.; Yin, M.; O'Brien, S.; Koberstein, J. T., Quantitative analysis of copper oxide nanoparticle composition and structure by X-ray photoelectron spectroscopy. Chemistry of Materials 2006, 18, (25), 6054-6058.
    43.Huang, L.; Peng, F.; Ohuchi, F. S., "In situ" XPS study of band structures at Cu2O/TiO2 heterojunctions interface. Surface Science 2009, 603, (17), 2825-2834.
    44.Lalitha, K.; Sadanandam, G.; Kumari, V. D.; Subrahmanyam, M.; Sreedhar, B.; Hebalkar, N. Y., Highly Stabilized and Finely Dispersed Cu2O/TiO2: A Promising Visible Sensitive Photocatalyst for Continuous Production of Hydrogen from Glycerol:Water Mixtures. J Phys Chem C 2010, 114, (50), 22181-22189.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE