簡易檢索 / 詳目顯示

研究生: 簡江諭
Chien, Chiang-Yu
論文名稱: 天然光敏染料--花青素應用於染料敏化太陽能電池的研究
Studies of dye-sensitized solar cells based on a natural photosensitizer--Anthocyanin.
指導教授: 徐邦達
Hsu, Ban-Dar
口試委員: 吳永俊
Wu, Yung-Chun
楊聰仁
Yang, Tsong-Jen
吳誌雄
Wu, Chih-Hsiung
刁維光
Diau, Wei-Guang
周卓煇
Jou, Juo-Huei
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 183
中文關鍵詞: 染料敏化太陽能電池花青素寡糖
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 花青素(anthocyanin)是一種廣泛存在於植物細胞中的色素,它能表現多種顏色,並具有抗氧化的能力。在本研究中,萃取了紫高麗菜的花青素作為天然光敏染料,應用在染料敏化太陽能電池(dye-sensitized solar cells, DSSCs)上,我們針對了染料敏化太陽能電池製程上的許多條件做測試並將之最佳化。比起化學性染料,天然染料具有無毒、低成本、低汙染、容易取得的特性。
    我們發現當花青素溶液的濃度在3 mM並且將酸鹼值調整至8.0時,電池的光電轉換效率會達到最高。在浸泡電極的時間上,15分鐘是最佳的時間長度。我們發現花青素敏化太陽能電池的表現,在低光度的環境下依然可以保持良好的轉換效率和電壓輸出。在乾燥避光環境下,花青素敏化二氧化鈦電極可以在12週之後保持超過40%的效能,若色素經過純化,效能表現可以保有80%以上。去氧膽酸(deoxycholic acid)可以做為花青素的共同吸附劑(coadsorbent)並可以顯著提升染料敏化太陽能電池的效率,我們發現當花青素和去氧膽酸的濃度比例達到1比40時可以達到最高的光電轉換效率(超過1.4%),這大約是過去文獻中,用天然花青素做為光敏染料的染料敏化電池效率的將近3倍。
    花青素在經過管柱層析純化後,染料敏化太陽能電池的效率會大幅地降低。研究證實,在純化過程中分離出來的無色雜質中,含有某種可以顯著提升電池效率的成份。經過生化測試,在無色雜質中能有效提升電池效率的成份很有可能是屬於醣類(carbohydrates)或是其相關的衍生物。經過測試,我們發現醣類是一種很有效的電池效率促進劑(enhancer),其促進效率的能力會和染料中的醣類含量成正比。不同種類的醣類具有不同的促進能力,大致上的能力排序是:寡醣>雙醣>單醣>多醣。在寡糖裡,異麥芽寡醣(isomalto-oligosaccharide)和木寡醣(xylooligosaccharide)具有最強的促進能力。染料敏化太陽能電池以醣類做為花青素的共同吸附劑可以將效率提升至超過1.6%,其短路電流密度(JSC)和開路電壓(VOC)各別達到大約4 mA cm-2和630 mV。
    同時將醣類和去氧膽酸做為花青素的共同吸附劑,電池的效率被更進一步地提升至將近1.9%,總體的效率成長量大約達到90%。本研究針對了醣類和去氧膽酸在染料敏化太陽能電池上的作用機制做了探討,期望為天然花青素染料敏化太陽能電池的效率促進劑提供一個天然、低成本、好取得的新選擇。


    Dye-sensitized solar cells (DSSCs) were fabricated using anthocyanin extracted from red cabbage (Brassica oleracea var. capitata f. rubra), and the conditions that could maximize their performance were explored. The best light-to-electricity conversion efficiency (η) was obtained when the pH and the concentration of the anthocyanin extract were at 8.0 and 3 mM, respectively, and when the immersion time for fabricating sensitized TiO2 film was 15 min. Under low light intensity, the DSSCs sensitized with anthocyanin can keep good VOC and η. More than 40% performance of the TiO2 electrodes sensitized with anthocyanin was maintained after 12 weeks in dark and dry environment, and more than 80% of that was maintained if the anthocyanin was purified. Fabricating the DSSCs in the presence of a coadsorbent, deoxycholic acid, at a molar ratio of dye:coadsorbent of 1:40 was also found to be able to improve the η significantly. The highest η reached was over 1.4%, which is almost three times higher than previously reported conversion efficiencies. In addition, further purification of the anthocyanin extract significantly led to a lower η, and the key elements that greatly affected the performance of the DSSCs based on anthocyanin was found to allocate in the colorless impurities fraction (IPF), which was separated from the purification of anthocyanin extract.
    Carbohydrates were found to be excellent performance enhancers that functioned in a dose-dependent manner. Different types of carbohydrates generally had different enhancement capabilities in the order of oligosaccharide > disaccharide > monosaccharide > polysaccharide. The enhancement capability was also highly dependent on the constituents of carbohydrates. Two oligosaccharides, isomalto-oligosaccharide (IMO) and xylooligosaccharide (XOS), showed the highest capability. The DSSCs sensitized with them as additives to anthocyanin exhibited a η over 1.6% (an improvement of 60%) with a short-circuit current (JSC) of about 4 mA cm-2, and open-circuit voltage (VOC) around 630 mV. The mode of interaction of anthocyanin with extrinsic carbohydrates was proposed and discussed. The use of carbohydrates and a common coadsorbent deoxycholic acid (DCA) together could induce an additional enhancement, which boosted the η up to 1.87% (an accumulative improvement of 90%). This study provided a choice of a promising and powerful enhancer for the DSSCs based on natural anthocyanins.

    Abstract ……………………………………………………………………….............I Abbreviation ………………………………………………………………….............V Part 1 Optimization of the dye-sensitized solar cells with anthocyanin as photosensitizer ………………………………………………………….………….1 1. Introduction ……………………………………………………………………….2 2. Materials and Methods …………………………………………………………..6 3. Results …………………………………………………………………………...15 4. Discussion ……………………………………………………………………….24 5. Conclusion ……………………………………………………………………….39 6. Tables …………………………………………………………………………….40 7. Figures …………………………………………………………………………...50 Part 2 Performance enhancement of dye-sensitized solar cells based on anthocyanin by carbohydrates ………………………………………………….76 1. Introduction ………………………………………………………………….......77 2. Materials and Methods …………………………………………………………..79 3. Results ……………………………………………………………………….......86 4. Discussion ……………………………………………………………………...96 5. Conclusion ……………………………………………………………………...110 6. Tables …………………………………………………………………………...112 7. Figures ………………………………………………………………………….133 References ………………………………………………………………………….154 Appendix …………………………………………………………………………...169

    1. O'Regan, B. and Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353: p. 737-740.

    2. Kalowekamo, J. and Baker, E., Estimating the manufacturing cost of purely organic solar cells. Solar Energy, 2009. 83: p. 1224-1231.

    3. Smestad, G.P., Grätzel, M., Demonstrating electron transfer and nanotechnology:A natural dye–sensitized nanocrystalline energy converter. Journal of Chemical Education, 1998. 75: p. 752-756.

    4. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., and Pettersson, H., Dye-sensitized solar cells. Chemical Reviews, 2010. 110: p. 6595-6663.

    5. Hara, K., Tachibana, Y., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., Sugihara, H., and Arakawa, H., Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes. Solar Energy Materials and Solar Cells, 2003. 77: p. 89-103.

    6. Cherepy, N.J., Smestad, G.P., Grätzel, M., and Zhang, J.Z., Ultrafast electron injection: Implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode. Journal of physical Chemistry B, 1997. 101: p. 9342-9351.

    7. Grätzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003. 4: p. 145-153.

    8. Qin, Y. and Peng, Q., Ruthenium sensitizers and their applications in dye-sensitized solar cells. International Journal of Photoenergy, 2012. 2012: p. 1-21.

    9. Nazeeruddin, M.K., Péchy P., Renouard, T., Zakeeruddin, S.M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G.B., Bignozzi, C.A., and Grätzel, M., Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of Agricultural and Food Chemistry, 2001. 123: p. 1613-1624.

    10. Chou, C.C., Hu, F.C., Yeh, H.H., Wu, H.P., Chi, Y., Clifford, J.N., Palomares, E., Liu, S.H., Chou, P.T., and Lee, G.H., Highly efficient dye-sensitized solar cells based on panchromatic ruthenium sensitizers with quinolinylbipyridine anchors. Angewandte Chemie International Edition in English, 2014. 53: p. 178-183.

    11. Nazeeruddin, M.K., Kay, A., Rodicio, I., Humpbry-Baker, R., Müller, E., Liska, P., Vlachopoulos, N., and Grätzel, M.,Conversion of light to electricity by cis-X2Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 1993. 115: p. 6382-6390.

    12. Nazeeruddin, M.K., Angelis, F.D., Fantacci, S., Selloni, A., Viscardi, G., Liska, P., Ito, S., Takeru, B., and Grätzel, M., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society, 2005. 127: p. 16835-16847.

    13. Yella, A., Lee, H.W., Tsao, H.N., Yi, C., Chandiran, A.K., Nazeeruddin, M.K., Diau, E.W.G., Yeh, C.Y., Zakeeruddin, S.M., and Grätzel, M., Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011. 334: p. 629-634.

    14. Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B.F.E., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M.K., and Grätzel, M., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 2014. 6: p. 242-7.

    15. Bessho, T., Zakeeruddin, S.M., Yeh, C.Y., Diau, E.W.G., and Grätzel, M., Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. Angewandte Chemie International Edition in English, 2010. 49: p. 6646-9.

    16. Gaiddon, C., Jeannequin, P., Bischoff, P., Pfeffer, M., Sirlin, C., and Loeffler, J.P., Ruthenium (II)-derived organometallic compounds induce cytostatic and cytotoxic effects on mammalian cancer cell lines through p53-dependent and p53-independent mechanisms. Journal of Pharmacology and Experimental Therapeutics, 2005. 315: p. 1403-1411.

    17. Yasbin, R.E., Matthews, C.R., and Clarke, M.J., Mutagenic and toxic effects of ruthenium. Chemico-Biological Interactions, 1980. 31: p. 355-365.

    18. Chowdhury B.A., Chandra, R.K., Biological and health implications of toxic heavy metal and essential trace element interactions. Progress in Food & Nutrition Science, 1987. 11: p. 55-113.

    19. Adamson, I.Y.R., Prieditis, H., Hedgecock, C., and Vincent, R., Zinc is the toxic factor in the lung response to an atmospheric particulate sample. Toxicology and Applied Pharmacology, 2000. 166: p. 111-119.

    20. Ito, S., Miura, H., Uchida, S., Takata, M., Sumioka, K., Liska, P., Comte, P., Péchy, P., and Grätzel, M., High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chemical Communications, 2008: p. 5194-5196.

    21. Zhang, G., Bala, H., Cheng, Y., Shi, D., Lv, X., Yu, Q., and Wang, P., High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer. Chemical Communications, 2009: p. 2198-2200.

    22. Sakakibara, H., Honda, Y., Nakagawa, S., Ashida, H., and Kanazawa, K., Simultaneous determination of all polyphenols in vegetables, fruits, and teas. Journal of Agricultural and Food Chemistry, 2003. 51: p. 571-581.

    23. Koponen, J.M., Happonen, A.M., Mattila, P.H., and Törrönen, A.R., Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. Journal of Agricultural and Food Chemistry, 2007. 55: p. 1612-1619.

    24. Calogero, G., Yum, J.H., Sinopoli, A., Di Marco, G., Grätzel, M., and Nazeeruddin, M.K., Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Solar Energy, 2012. 86: p. 1563-1575.

    25. Duangmal, K., Saicheua, B., and Sueeprasan, S., Roselle anthocyanins as a natural food colorant and improvement of its colour stability. Color and Paints, Interim Meeting of the International Color Association, 2004.

    26. Hao, S., Wu, J., Huang, Y., and Lin, J., Natural dyes as photosensitizers for dye-sensitized solar cell. Solar Energy, 2006. 80: p. 209-214.

    27. Wongcharee, K., Meeyoo, V., and Chavadej, S., Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Solar Energy Materials and Solar Cells, 2007. 91: p. 566-571.

    28. Garcia, C.G., Polo., A.S., Iha, N.Y.M., Fruit extracts and ruthenium polypyridinic dyes for sensitization of TiO2 in photoelectrochemical solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2003. 160: p. 87-91.

    29. Fernando, J. M. R. C., Senadeera, G.K.R., Natural anthocyanins as photosensitizers for dye-sensitized solar devices. Current Science, 2008. 95: p. 663-666.

    30. Lai, W.H., Su, Y.H., Teoh, L.G., and Hon, M.H., Commercial and natural dyes as photosensitizers for a water-based dye-sensitized solar cell loaded with gold nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2008. 195: p. 307-313.

    31. Calogero, G., Di Marco, G., Caramori, S., Cazzanti, S., Argazzi, R., and Bignozzi, C.A., Natural dye senstizers for photoelectrochemical cells. Energy & Environmental Science, 2009. 2: p. 1162-1172.

    32. Aduloju, K.A., and Shitta, M.B., Dye sensitized solar cell using natural dyes extracted from red leave onion. International Journal of the Physical Sciences, 2012. 7: p. 709-712.

    33. Calogero, G. and Di Marco, G., Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2008. 92: p. 1341-1346.
    34. Chang, H. and Lo, Y.J., Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells. Solar Energy, 2010. 84: p. 1833-1837.

    35. Furukawa, S., Iino, H., Iwamoto, T., Kukita, K., and Yamauchi, S., Characteristics of dye-sensitized solar cells using natural dye. Thin Solid Films, 2009. 518: p. 526-529.

    36. Luo, P., Niu, H., Zheng, G., Bai, X., Zhang, M., and Wang, W., From salmon pink to blue natural sensitizers for solar cells: Canna indica L., Salvia splendens, cowberry and Solanum nigrum L. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009. 74: p. 936-942.

    37. Polo, A.S., and Iha, N.Y.M. , Blue sensitizers for solar cells: Natural dyes from Calafate and Jaboticaba. Solar Energy Materials and Solar Cells, 2006. 90: p. 1936-1944.

    38. Torskangerpoll, K., and Andersen, Ø.M., Colour stability of anthocyanins in aqueous solutions at various pH values. Food Chemistry, 2005. 89: p. 427-440.

    39. Wintermans, J. F. G. M., and Mots, A.D., Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta, 1965. 109: p. 448-453.

    40. Küpper, H., Küpper, F., Spiller, M., Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. Journal of Experimental Botany, 1996. 47: p. 259-266.

    41. Takeuchi, Y., and Amao, Y., Light-harvesting properties of zinc complex of chlorophyll-a from spirulina in surfactant micellar media. BioMetals, 2005. 18: p. 15-21.

    42. Amao, Y. and Yamada, Y., Photovoltaic conversion using Zn chlorophyll derivative assembled in hydrophobic domain onto nanocrystalline TiO2 electrode. Biosensors and Bioelectronics, 2007. 22: p. 1561-1565.

    43. Ordaz-Galindo, A., Wesche-Ebeling, P., Wrolstad, R.E., Rodriguez-Saona, L., and Argaiz-Jamet, A., Purification and identification of Capulin (Prunus serotina Ehrh) anthocyanins. Food Chemistry, 1999. 65: p. 201-206.

    44. Giusti, M.M., Rodríguez-Saona, L.E., Griffin, D., and Wrolstad, R.E., Elecrospray and tandem mass spectroscopy as tools for anthocyanin characterization. Journal of Agricultural and Food Chemistry, 1999. 47: p. 4657-4664.

    45. Garzón, G.A., and Wrolstad, R.E., Major anthocyanins and antioxidant activity of Nasturtium flowers (Tropaeolum majus). Food Chemistry, 2009. 114: p. 44-49.

    46. Hoshino, T., An approximate estimate of self-association constants and the self-stacking conformation of Malvin quinonoidal bases studied by 1H NMR. Phytochemistry, 1991. 30: p. 2049-2055.

    47. Wang, Z.S., Cui, Y., Dan-oh, Y., Kasada, C., Shinpo, A., and Hara, K., Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells electron lifetimeimproved by coadsorption of deoxycholic acid. The Journal of Physical Chemistry C, 2007. 111: p. 7224-7230.

    48. Xia, J. and Yanagida, S., Strategy to improve the performance of dye-sensitized solar cells: Interface engineering principle. Solar Energy, 2011. 85: p. 3143-3159.

    49. Sharma, G.D., Kurchania, R., Ball, R.J., Roy, M.S., and Mikroyannidis, J.A., Effect of deoxycholic acid on the performance of liquid electrolyte dye-sensitized solar cells using a perylene monoimide derivative. International Journal of Photoenergy, 2012. 2012: p. 1-7.

    50. Lim, J., Kwon, Y.S., and Park, T., Effect of coadsorbent properties on the photovoltaic performance of dye-sensitized solar cells. Chemical Communications, 2011. 47: p. 4147-4749.

    51. Hara, K., Dan-oh, Y., Kasada, C., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., and Arakawa, H., Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells. Langmuir, 2004. 20: p. 4205-4210.

    52. Tsai, P.J., McIntosh, J., Pearce, P., Camden, B., and Jordan, B.R., Anthocyanin and antioxidant capacity in Roselle (Hibiscus Sabdariffa L.) extract. Food Research International, 2002. 35: p. 351-356.

    53. Wu, X., and Prior, R.L., Identification and characterization of anthocyanins by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry in common foods in the United States : Vegetables, nuts, and grains. Journal of Agricultural and Food Chemistry, 2005. 53: p. 3101-3113.

    54. Shkrob, I.A., Sauer, M.C., Jr., and Gosztola, D., Efficient, rapid one-electron photooxidation of chemisorbed polyhydroxyl alcohols and carbohydrates by TiO2 nanoparticles in an aqueous solution. The Journal of Physical Chemistry B, 2004. 108: p. 12512-12517.

    55. McDougall, G.J., Fyffe, S., Dobson, P., and Stewart, D., Anthocyanins from red cabbage – stability to simulated gastrointestinal digestion. Phytochemistry, 2007. 68: p. 1285-1294.

    56. Brouillard, R., and Dangles, O., Flavonoids and flower colour, in: Harborne, J.B. (Ed.), The flavonoids: Advances in research since 1986. Chapman and Hall, London, 1993: p. 565-588.

    57. Dai, Q., and Rabani, J., Photosensitization of nanocrystalline TiO2 films by anthocyanin dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2002. 148: p. 17-24.

    58. Fossen, T., Cabrita, L., and Andersen, Ø.M., Colour and stability of pure anthocyanins influenced by pH including the alkaline region. Food Chemistry, 1998. 63: p. 435-440.

    59. Burke, A., Ito, S., Snaith, H., Bach, U., Kwiatkowski, J., and Grätzel, M., The function of a TiO2 compact layer in dye-sensitized solar cells incorporating "planar" organic dyes. Nano letters, 2008. 8: p. 977-981.

    60. Kerr, M.J., Cuevas, A., and Sinton, R.A., Generalized analysis of quasi-steady-state and transient decay open circuit voltage measurements. Journal of Applied Physics, 2002. 91: p. 399-404.

    61. Rahman, M.Y.A., Umar, A.A., Taslim, R., and Salleh, M.M., Effect of organic dye, the concentration and dipping time of the organic dye N719 on the photovoltaic performance of dye-sensitized ZnO solar cell prepared by ammonia-assisted hydrolysis technique. Electrochimica Acta, 2013. 88: p. 639-643.

    62. Chang, W.C., Lee, C.H., Yu, W.C., and Lin, C.M., Optimization of dye adsorption time and film thickness for efficient ZnO dye-sensitized soalr cells with high at-rest stability. Nanoscale Research Letters, 2012. 7: p. 688-697.

    63. Shahzad, N., Pugliese, D., Lamberti, A., Sacco, A., Virga, A., Gazia, R., Bianco, S., Shahzad, M.I., Tresso, E., and Pirri, C.F., Monitoring the dye impregnation time of nanostructured photoanodes for dye sensitized solar cells. Journal of Physics:Conference Series, 2013. 439: p. 1-12.

    64. Macyk, W., Szaciłowski, K., Stochel, G., Buchalska, M., Kuncewicz, J., and Łabuz, P., Titanium (IV) complexes as direct TiO2 photosensitizers. Coordination Chemistry Reviews, 2010. 254: p. 2687-2701.

    65. Leydet, Y., Gavara, R., Petrov, V., Diniz, A.M., Parola, A.J., Lime, J.C., and Pina, F., The effect of self-aggregation on the determination of the kinetic and thermodynamic constants of the network of chemical reactions in 3-glucoside anthocyanins. Phytochemistry, 2012. 83: p. 125-135.

    66. Pastore, M., and Angelis, F.D., Aggregation of organic dyes on TiO2 in dye-sensitized solar cells model an ab Initio investigation. ACS Nano, 2010. 4: p. 556-562.

    67. Tatay, S., Haque, S.A., O’Regan, B., Durrant, J.R., Verhees, W.J.H., Kroon, J.M., Vidal-Ferran, A., Gaviña, P., and Palomares, E., Kinetic competition in liquid electrolyte and solid-state cyanine dye sensitized solar cells. Journal of Materials Chemistry, 2007. 17: p. 3037-3044.
    68. Ehret, A., Stuhl, L., and Spitler, M.T., Spectral Sensitization of TiO2 nanocrystalline electrodes with aggregated cyanine dyes. Journal of Physical Chemistry B, 2001. 105: p. 9960-9965.

    69. Calogero, G., Di Marco, G., Cazzanti, S., Caramori, S., Argazzi, R., Carlo, A.D., and Bignozzi, C.A., Efficient dye-sensitized solar cells using red turnip and purple wild sicilian prickly pear fruits. International Journal of Molecular Sciences, 2010. 11: p. 254-267.

    70. West, M.E., and Mauer, L.J., Color and chemical stability of a variety of anthocyanins and ascorbic acid in solution and powder forms. Journal of Agricultural and Food Chemistry, 2013. 61: p. 4169-4179.

    71. Houbiers, C., Lima, J.C., Maçanita, A.L., and Santos, H., Color stabilization of malvidin 3-glucoside  self-aggregation of the flavylium cation and copigmentation with the Z-chalcone form. Journal of Physical Chemistry B, 1998. 102: p. 3578-3585.

    72. Hoshino, T., Matsumoto, U., and Goto, T., Self-association of some anthocyanins in neutral aqueous solution. Phytochemistry, 1981. 20: p. 1971-1976.

    73. Dangles, O., Saito, N., and Brouillard, R., Anthocyanin intramolecular copigment effect. Phytochemistry, 1993. 34: p. 119-124.

    74. Boulton, R., The copigmentation of anthocyanins and its role in the color of red wine: A critical review. American Journal of Enology and Viticulture, 2001. 52: p. 67-87.

    75. Quan, V.A., Degradation of the solar cell dye sensitizer N719. Preliminary building of dye-sensitized solar cell. Master Thesis, Department of Life Sciences and Chemistry, Roskilde University, 2006.

    76. Nuay, V.A., Kim, D.H., Lee, S.H., and Ko, J., Thiophene linked porphyrin derivatives for dye sensitized solar cell. Bulletin of the Korean Chemical Society, 2009. 30: p. 2871-2872.

    77. Kafafy, H., Wu, H., Peng, M., Hu, H., Yan, K., El-Shishtawy, R.M., and Zou, D., Steric and solvent effect in dye-sensitized solar cells utilizing phenothiazine-based dyes. International Journal of Photoenergy, 2014. 2014: p. 1-9.

    78. Lu, H.P., Tsai, C.Y., Yen, W.N., Hsieh, C.P., Lee, C.W., Yeh, C.Y., and Diau, E.W.G., Control of dye aggregation and electron injection for highly efficient porphyrin sensitizers adsorbed on semiconductor films with varying ratios of coadsorbate. Journal of Physical Chemistry C, 2009. 113: p. 20990-20997.

    79. Kay, A., and Grätzel, M., Artificial photosynthesis. 1. Photosensitization of TiO2 solar cells with chlorophyll derivatives and related natural porphyrins. The Journal of Physical Chemistry, 1993. 97: p. 6272-6277.

    80. Ono, T., Yamaguchi, T., and Arakawa, H., Influence of dye adsorption solvent on the performance of amesoporous dye-sensitized solar cell using infred organic dye. Journal of Solar Energy Engineering, 2010. 132: p. 021101-1-7.

    81. Chang, H., Kao, M.J., Chen, T.L., Kuo, H.G., Choand, K.C., Lin, X.P., Natural sensitizer for dye-sensitized solar cells using three layers of photoelectrode thin films with a Schottky Barrier. American Journal of Engineering and Applied Sciences, 2011. 4: p. 214-222.

    82. Chien, C.Y. and Hsu, B.D., Optimization of the dye-sensitized solar cell with anthocyanin as photosensitizer. Solar Energy, 2013. 98: p. 203-211.

    83. Zhou, H., Wu, L., Gao, Y., and Ma, T., Dye-sensitized solar cells using 20 natural dyes as sensitizers. Journal of Photochemistry and Photobiology A: Chemistry, 2011. 219: p. 188-194.

    84. Wu, X., Gu, L., Prior, R.L., Mckay, S., Characterization of anthocyanins and proanthocyanidins in some cultivars of ribes, aronia, and sambucus and their antioxidant capacity. Journal of Agricultural and Food Chemistry, 2004. 52: p. 7846-7856.

    85. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976. 72: p. 248-254.

    86. Zor, T., and Selinger, Z., Linearization of the Bradford protein assay increases its sensitivity theoretical and experimental studies. Analytical Biochemistry, 1996. 236: p. 302-308.

    87. Padda, M.S. and Picha, D.H., Methodology optimization for quantification of total phenolics and individual phenolic acids in sweetpotato (Ipomoea batatas L.) roots. Journal of Food Science, 2007. 72: p. C412-C416.

    88. Chang, C.C., Yang, M.H., Wen, H.M., and Chern, J.C., Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 2002. 10: p. 178-182.

    89. Nagy, M., and Grančai, D., Colorimetric determination of flavanones in propolis. Pharmazie, 1996. 51: p. 100-101.

    90. Woisky, R.G., and Salatino, A., Analysis of propolis: some parameters and procedures for chemical quality control. Journal of Apicultural Research, 1998. 37: p. 99-105.

    91. Benedict, S.R., A reagent for the detection of reducing sugars. The Journal of Biological Chemistry, 1909. 5: p. 485-487.

    92. Torget, R.W., Kim, J.S., and Lee, Y.Y., Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Industrial & Engineering Chemistry Research, 2000. 39: p. 2817-2825.

    93. Bucior, I., and Burger, M.M., Carbohydrate-carbohydrate interaction as a major force initiating cell-cell recognition. Glycoconjugate Journal, 2004. 21: p. 111-123.

    94. Bucior, I., Scheuring, S., Engel, A., and Burger, M.M., Carbohydrate-carbohydrate interaction provides adhesion force and specificity for cellular recognition. The Journal of Cell Biology, 2004. 165: p. 529-537.

    95. Spillmann, D., and Burger, M.M., Carbohydrate-carbohydrate interactions in adhesion. Journal of Cellular Biochemistry, 1996. 61: p. 562-568.

    96. Cabrita, L., Petrov, V., and Pina, F., On the thermal degradation of anthocyanidins: cyanidin. RSC Advances, 2014. 4: p. 18939-18944.

    97. Sadilova, E., Carle, R., and Stintzing, F.C., Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Molecular Nutrition & Food Research, 2007. 51: p. 1461-1471.

    98. Barros, L., Dueñas, M., Ferreira, I.C.F.R., Baptista, P., and Santos-Buelga, C., Phenolic acids determination by HPLC-DAD-ESI/MS in sixteen different Portuguese wild mushrooms species. Food and Chemical Toxicology, 2009. 47: p. 1076-1079.

    99. Armstrong, M.D., Shaw, K.N.F., and Wall, P.E., The Phenolic acids of human urine: Paper chromatography of phenolic acids. The Journal of Biological Chemistry, 1956. 218: p. 293-303.

    100. Zheng, Y., Haworth, I.S., Zuo, Z., Chow, M.S.S., Chow, A.H.L., Physicochemical and structural characterization of quercetin-β-cyclodextrin complexes. Journal of Pharmaceutical Sciences, 2005. 94: p. 1079-1089.

    101. Bucior, I. and Burger, M.M., Carbohydrate-carbohydrate interactions in cell recognition. Current Opinion in Structural Biology, 2004. 14: p. 631-637.

    102. Wu, X., and Prior, R.L., Systematic identification and characterization of anthocyanins by HPLC-ESI-MS MS in common foods in the United States fruits and berries. Journal of Agricultural and Food Chemistry, 2005. 53: p. 2589-2599.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE