簡易檢索 / 詳目顯示

研究生: 林應如
Ying-Ju Lin
論文名稱: 日本腦炎病毒前膜蛋白與套膜蛋白形成異質雙體複合物及重組類病毒顆粒之研究
Molecular Characterization of prM and E Proteins Involved in prM-E Heterodimeric Complex Interaction and Recombinant Subviral Particle Formation of Japanese Encephalitis Virus
指導教授: 吳夙欽
Suh-Chin Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 123
中文關鍵詞: 日本腦炎病毒
外文關鍵詞: JEV
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 黃質病毒的前膜蛋白與套膜蛋白形成的複合物對於未成熟病毒顆粒生合成是很重要的步驟,接著未成熟病毒顆粒經由前膜蛋白切割成膜蛋白的步驟後產生成熟的病毒顆粒並釋放出來。本篇論文利用桿狀病毒表現系統、免疫沉澱法與蔗糖梯度沉降離心分析探討細胞內的日本腦炎病毒前膜蛋白與套膜蛋白複合物的形成。研究一系列C端截短的前膜蛋白與套膜蛋白的交互作用顯示去除前膜蛋白上的穿膜區域後,使得前膜蛋白與套膜蛋白形成的複合物有減少的驅勢。另外利用alanine取代法分析前膜蛋白第93-103個胺基酸區域的結果顯示第99個胺基酸histidine對於前膜蛋白與套膜蛋白複合物的形成有重要的影響。進一步以pulse chase labeling和共軛焦顯微鏡研究發現第99個胺基酸突變的影響並不是因為蛋白質減少或者改變了蛋白質駐足的位置。利用桿狀病毒共同表現前膜蛋白與套膜蛋白可在細胞培養液測到重組類病毒顆粒,然而在第99個胺基酸突變蛋白質中並沒有測得。經黃質病毒屬胺基酸序列分析得知前膜蛋白第99個胺基酸為高度保留性。我們進一步利用刪除, alanine插入和glycine取代法分析前膜蛋白的過膜區域顯示第一個過膜區域,特別是GXXXG motif影響前膜蛋白與套膜蛋白複合物形成和病毒顆粒的形成與釋放。此外,我們也利用alanine插入和取代法分析套膜蛋白的過膜區域,其結果也顯示第一個過膜區域,特別是靠近連接點的區域影響異質雙體複合物和病毒顆粒的形成與釋放。此結果是首次發現前膜蛋白的過膜區域與第99個胺基酸和套膜蛋白的過膜區域對於異質雙體複合物和病毒顆粒的形成是最少需要的區域。這些結果提供前膜與套膜蛋白分子構造對於複合物的形成和病毒顆粒組成機制提供可能的結構和功能的資訊。


    Abstract
    The formation of flavivirus prM-E complex is an important step for the biogenesis of immature virions, followed by a subsequent cleavage of prM to M protein through cellular protease to result in the production and release of mature virions. The intracellular formations of the prM-E complexes of Japanese encephalitis virus (JEV) were investigated by baculovirus co-expression of prM and E in trans and prM and E in cis in Sf9 insect cells analyzed by anti-E antibody immunoprecipitation and sucrose gradient sedimentation analysis. A series of the carboxyl-terminally truncated prM mutant baculoviruses were constructed to demonstrate that the truncations of the transmembrane (TM) region resulted in a reduction of the formation of the stable prM-E complex. Alanine scanning site-directed mutagenesis on the prM99-103 region indicated that the His99 residue was the critical prM-binding element for the prM-E heterodimeric stable complex formation. The single amino acid mutation at the His-99 residue of prM abolishing the prM-E interaction was not due to the reduced expression or different subcellular location of the mutant prM protein involved in prM-E interactions as characterized by pulse chase labeling and confocal scanning microscopic analysis. Recombinant subviral particles were detected in the Sf9 cell culture supernatants by baculovirus co-expression of prM and E proteins but not by the prM-H99A mutant. Sequence alignment analysis was further conducted in different groups of flaviviruses to show the prM-H99 residues are generally conserved. The TM regions of prM protein on prM-E heterodimeric complex formation and recombinant subviral particles formation of JEV were further characterized and the TM1 region of prM, especially the specific amino acid sequence-GXXXG motif, was demonstrated using deletion, alanine insertion and glycine substitution mutagenesis. The GXXXG motif located in the TM1 region of prM of JEV were identified for the influence of heterodimerization and virus assembly. Furthermore, the TM regions of E protein on prM-E heterodimeric complex formation and recombinant subviral particles formation of JEV were characterized and the TM1 regions and the conserved charged residues (RDR) of the connecting segment of E were demonstrated using alanine insertion and replacement mutagenesis. These data indicate that the TM regions and His99 of prM and the TM regions and the conserved charged residues (RDR) of the connecting segment of E proteins play a crucial role of the biogenesis of JEV envelope. This information, concerning a molecular framework for the prM and E proteins, is considered to elucidate the structure/function relationship of the prM-E complex synthesis and provide the proper trajectory for flavivirus assembly and maturation.

    中文摘要………………………………………………………………...I Abstract………………………………………………………………....II Acknowledgments…………………………………………………..….IV Abbreviations………………………………………………………...…V Contents……………………………..……………………………...…VII Chapter 1 Research background, Incentive and Aims..........................1 1. Japanese encephalitis virus……………………………………………………….1 1-1. Importance, history, and the transmission cycle……………………………...1 1-2. Genome structure and molecular epidemiology of JE disease……………….3 1-3. Virion and flavivirus life cycle……………………………………………….4 2. Flavivirus particles………………………………………………………………5 2-1. The structure of flavivirus particles (containing nucleocapsid)……………....5 2-2. The structure of flavivirus subviral particles (no containing nucleocapsid)….7 3. Studies on prM and E proteins of flavivirus…………………………………...10 3-1. Structure and function of prM protein………………………………………10 3-2. Structure and function of E protein………………………………………….12 4. Role of transmembrane regions of membrane proteins of enveloped viruses..13 4-1. membrane anchor and signal sequence……………………………………...13 4-2. Membrane fusion……………………………………………………………14 4-3. Subviral particles formation…………………………………………………15 5. Research Incentive and Aims…………………………………………………..16 5-1. Identification of prM minimal binding sites for prM-E heterodimerization and subviral particles formation………………………………………...……...16 5-2. Fine mapping of the transmembrane regions of prM and E proteins for prM-E heterodimerization and recombinant subviral particles formation…...……17 Chapter 2 Histidine at Residue 99 and the Transmembrane Region of the Precursor Membrane prM Protein are important for the prM-E heterodimeric Complex Formation of Japanese Encephalitis Virus 2-1. Introduction…………………………………...……………….…………….18 2-2. Materials and methods………………………………………………………20 2-3. Results and discussion………..……………………………………………..27 2-4. Conclusion…………..………..……………………………………………..37 Chapter 3 prM-E Heterodimerization and Recombinant Subviral Particle Secretion Affected by Two Transmembrane Regions and One Connecting Segment in the prM and E Proteins of Japanese Encephalitis Virus 3-1. Introduction………………………………...………………………………..39 3-2. Materials and methods……………………………...……………………….43 3-3. Results and discussion…………………………………...………………….47 3-4. Conclusion……...…………………………..………………….……………61 References………………………………………………………………63 Tables…………………………………………………………………...76 Figures…………………..……………………………………………...79 TABLES LIST Table 1. Amino acid sequence alignment analysis of the M protein (prM93-167) from the genus Flavivirus…………………………………………………………….76 Table 2. Amino acid sequence alignment analysis of the TM regions of prM protein (prM130-167) from the genus Flavivirus………………………………………77 Table 3. Amino acid sequence alignment analysis of the TM regions of E protein (prM461-500) from the genus Flavivirus……………………………………….78 FIGURES LIST Figure 1. The Global Distribution of Medically Important Members of the Japanese Encephalitis Serological group of Flaviviruses…………………………………79 Figure 2. The transmission cycles mosquito-borne viruses………………………….80 Figure 3. The genome structure of JEV……………………………………………...81 Figure 4. Mature virion and immature virion inner structure………………………..82 Figure 5. Flavivirus life cycle………………………………………………………..83 Figure 6. Proposed rearrangement of the E proteins during maturation and fusion…84 Figure 7. Immature flavivirus particles……………………………………………....85 Figure 8. Diagrams of the flavivirus M and E protein ectodomain and transmembrane domain, side view……………………………………………………………….86 Figure 9A. Bac-prME, Bac-E and Bac-prM represent three recombinant baculoviruses encoding prME, E and prM of JEV………………..……………………………87 Figure 9B. Sf9 cells were infected with Bac-prME, Bac-E, co-infected with Bac-prM and Bac-E, infected with JEV in C6/36 and Sf9 cells…………………………..88 Figure 9C. The virus replication kinetics of JEV Ch2195LA strain in C6/36 and Sf9 cells…...…………………………………………………………………………89 Figure 9D. Cross-linking analysis……………………………..………………...…...90 Figure 10A. Mapping the prM binding elements in Sf9 cells co-infected with Bac-E and Bac-prM mutants………………………………………………………..…91 Figure 10B. Sf9 cells were co-infected with Bac-E and Bac-prM mutants……….…92 Figure 10C. The percentage of the prM binding intensity to the prM-E complex in each truncated mutants was determined by phosphorimaging……………....…93 Figure 11. Sucrose gradient sedimentation analysis to determine the prM binding affinity for the prM-E heterodimeric stable complex……………………..……94 Figure 12. Alanine scanning site-directed mutagenesis of the prM99-103 region by constructing Bac-prM-H99A, Bac-prM-G100A, Bac-prM-E101A, Bac-prM-S102A, Bac-prM-S103A……………………………………….……96 Figure 13. Sucrose gradient sedimentation analysis of the five prM mutant proteins for the formation of the prM-E heterodimeric stable complex………………...98 Figure 14. Pulse-chase analysis for the stable formation of prM-E heterodimeric complex.…………………………………………………………….….………99 Figure 15. Colocalization of prM protein with an ER-specific dye, DiIC16(3)……100 Figure 16. Transmission electron micrographs of virus particles stained with uranyl acetate……………………………………………………………………….…101 Figure 17. Illustration of the two transmembrane regions of prM protein……….…102 Figure 18. Characterization of the TM regions of prM protein by the truncation mutagenesis………………………………………………………………..…..103 Figure 19. The transmembrane region truncation mutagenesis of the prM protein for prM-E heterodimerization……………………………………………………..104 Figure 20. Sucrose gradient sedimentation analysis of PEG-precipitated cleared supernatants from Sf9 cells infected with JEV or co-infected Sf9 cells with Bac-prM and Bac-prM truncated mutants……………………………………………..………………...………..105 Figure 21. Characterization of the TM regions of prM protein by alanine insertion mutagenesis………………………………….…………………………….…..106 Figure 22. Alanine insertion mutagenesis of the TM regions of prM protein for prM-E heterodimerization…………………………………………………..….……..107 Figure 23. Sucrose gradient sedimentation analysis of PEG-precipitated cleared supernatants from co-infected Sf9 cells with Bac-prM and Bac-prM insertion mutants……………………………………………..…………..……………..109 Figure 24. Characterization of the GXXXG motif of TM1 region of prM protein by glycine substitution mutagenesis……………………………………………………..…...….……..110 Figure 25. Glycine substitution mutagenesis of the GXXXG motif of TM1 region of prM protein for prM-E heterodimerization………….……………………………………..…….……..111 Figure 26. Sucrose gradient sedimentation analysis of PEG-precipitated cleared supernatants from co-infected Sf9 cells with Bac-prM and Bac-prM glycine substitution mutants…...……………………………………………………..……………..113 Figure 27. Characterization of the connecting segment between TM1 and TM2 of prM protein by alanine replacement mutagenesis.….………………………………..………………..……………..114 Figure 28. Alanine replacement mutagenesis of the connecting segment between TM1 and TM2 of prM protein for prM-E heterodimerization.….…………………………………………..……………..115 Figure 29. Sucrose gradient sedimentation analysis of PEG-precipitated cleared supernatants from co-infected Sf9 cells with Bac-prM and Bac-prM R152A mutant………………….………………………………………..……………..116 Figure 30. Characterization of the TM regions of E protein by alanine insertion mutagenesis………………………………….…………………………….…..117 Figure 31. Alanine insertion mutagenesis of the TM regions of E for prM-E heterodimerization…………………………………………………..….……..118 Figure 32. Sucrose gradient sedimentation analysis of PEG-precipitated cleared supernatants from infected Sf9 cells with Bac-prME and Bac-prME insertion mutants…………..………………………………………………..…………...120 Figure 33. Characterization of the connecting segment between TM1 and TM2 of E protein by alanine replacement mutagenesis……………...…………………….………………………………121 Figure 34. Alanine replacement mutagenesis of the connecting segment between TM1 and TM2 of prM protein for prM-E heterodimerization….………………………….………………………………122 Figure 35. Sucrose gradient sedimentation analysis of PEG-precipitated cleared supernatants from infected Sf9 cells with Bac-prME and Bac-prME replacement mutants.………………………………………………………….…………….123

    References
    Allison SL, Schalich J, Stiasny K, Mandl CW, Kunz C, Heinz FX. (1995a) Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J Virol. 69:695-700.
    Allison SL, Stadler K, Mandl CW, Kunz C, Heinz FX (1995b) Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form. J Virol 69:5816-5820.
    Allison SL, Stiasny K, Stadler K, Mandl CW, Heinz FX (1999) Mapping of functional elements in the stem-anchor region of tick-borne encephalitis virus envelope protein E. J Virol 73:5605-5612.
    Braun P, Persson B, Kaback HR, von Heijne G. (1997) Alanine insertion scanning mutagenesis of lactose permease transmembrane helices. J Biol Chem. 272:29566-29571.
    Bruss V, Ganem D. (1991) The role of envelope proteins in hepatitis B virus assembly. Proc Natl Acad Sci U S A. 88:1059-1063.
    Burke DS, Monath TP (2001) Flaviviruses. In Fields Virology, Knipe DM, Howley P. (ed) pp 1043-1125. Philaephia: Lippincott-Raven
    Chen BQ, Beaty BJ. (1982) Japanese encephalitis vaccine (2-8 strain) and parent (SA 14 strain) viruses in Culex tritaeniorhynchus mosquitoes. Am J Trop Med Hyg. 31:403-407.
    Chen WR, Tesh RB, Rico-Hesse R. (1990) Genetic variation of Japanese encephalitis virus in nature. J Gen Virol. 71:2915-2922.
    Chen WR, Rico-Hesse R, Tesh RB. (1992) A new genotype of Japanese encephalitis virus from Indonesia. Am J Trop Med Hyg. 47:61-69.
    Cleverley DZ, Lenard J. (1998) The transmembrane domain in viral fusion: essential role for a conserved glycine residue in vesicular stomatitis virus G protein. Proc Natl Acad Sci U S A. 95:3425-3430.
    Cocquerel L, Wychowski C, Minner F, Penin F, Dubuisson J. (2000) Charged residues in the transmembrane domains of hepatitis C virus glycoproteins play a major role in the processing, subcellular localization, and assembly of these envelope proteins. J Virol. 74:3623-3633.
    Cocquerel L, Op de Beeck A, Lambot M, Roussel J, Delgrange D, Pillez A, Wychowski C, Penin F, Dubuisson J. (2002) Topological changes in the transmembrane domains of hepatitis C virus envelope glycoproteins. EMBO J. 21:2893-2902.
    Corse E, Machamer CE (2003) The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction. Virology 312, 25-34.
    Elshuber S, Allison SL, Heinz FX, Mandl CW. (2003) Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus. J Gen Virol. 84:183-191.
    Endy TP, Nisalak A. (2002) Japanese encephalitis virus: ecology and epidemiology. Curr Top Microbiol Immunol. 267:11-48.
    Ferlenghi I, Clarke M, Ruttan T, Allison SL, Schalich J, Heinz FX, Harrison SC, Rey FA, Fuller SD. (2001) Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. Mol Cell. 7:593-602.
    Fonseca BA, Pincus S, Shope RE, Paoletti E, Mason PW. (1994) Recombinant vaccinia viruses co-expressing dengue-1 glycoproteins prM and E induce neutralizing antibodies in mice. Vaccine. 12:279-285.
    Garoff H, Hewson R, Opstelten DJ. (1998) Virus maturation by budding. Microbiol Mol Biol Rev. 62:1171-1190.
    Guirakhoo F, Heinz FX, Mandl CW, Holzmann H, Kunz C. (1991) Fusion activity of flaviviruses: comparison of mature and immature (prM-containing) tick-borne encephalitis virions. J Gen Virol. 72:1323-1329.
    Guirakhoo F, Bolin RA, Roehrig JT. (1992) The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology. 191:921-931.
    Guirakhoo F, Zhang ZX, Chambers TJ, Delagrave S, Arroyo J, Barrett AD, Monath TP. (1999) Immunogenicity, genetic stability, and protective efficacy of a recombinant, chimeric yellow fever-Japanese encephalitis virus (ChimeriVax-JE) as a live, attenuated vaccine candidate against Japanese encephalitis. Virology. 257:363-372.
    Heinz FX, Kunz C. (1980) Chemical crosslinking of tick-borne encephalitis virus and its subunits. J Gen Virol. 46(2):301-309.
    Heinz FX, Stiasny K, Puschner-Auer G, Holzmann H, Allison SL, Mandl CW, Kunz C. (1994) Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM. Virology. 198:109-117.
    Heinz FX, Allison SL, Stiasny K, Schalich J, Holzmann H, Mandl CW, Kunz C. (1995) Recombinant and virion-derived soluble and particulate immunogens for vaccination against tick-borne encephalitis. Vaccine. 13:1636-1642.
    Heinz FX, Allison SL (2003) Structures and mechanisms in flavivirus fusion. Adv Virus Res 55:231-269.
    Hunt AR, Cropp CB, Chang GJ (2001) A recombinant particulate antigen of Japanese encephalitis virus produced in stably-transformed cells is an effective noninfectious antigen and subunit immunogen. J Virol Methods 97:133-149
    Jeong HS, Shin JH, Park YN, Choi JY, Kim YL, Kim BG, Ryu SR, Baek SY, Lee SH, Park SN. (2003) Development of real-time RT-PCR for evaluation of JEV clearance during purification of HPV type 16 L1 virus-like particles Biologicals 31:223-229
    Kim H, Lee SJ, Park JY, Park YW, Kim HS, Kang HY, Hur BK, Ryu YW, Han SI, Kim JS. (2004) Study on persistent infection of Japanese encephalitis virus Beijing-1 strain in serum-free Sf9 cell cultures. J Microbiol 42:25-31.
    Kojima A, Yasuda A, Asanuma H, Ishikawa T, Takamizawa A, Yasui K, Kurata T. (2003) Stable high-producer cell clone expressing virus-like particles of the Japanese encephalitis virus e protein for a second-generation subunit vaccine. J Virol. 77:8745-8755.
    Konishi E, Pincus S, Paoletti E, Shope RE, Burrage T, Mason PW. (1992) Mice immunized with a subviral particle containing the Japanese encephalitis virus prM/M and E proteins are protected from lethal JEV infection. Virology. 188:714-720.
    Konishi E, Mason PW. (1993) Proper maturation of the Japanese encephalitis virus envelope glycoprotein requires cosynthesis with the premembrane protein. J Virol. 67:1672-1675.
    Konishi E, Fujii A, Mason PW. (2001) Generation and characterization of a mammalian cell line continuously expressing Japanese encephalitis virus subviral particles. J Virol. 75:2204-2212.
    Konishi E, Fujii A. (2002) Dengue type 2 virus subviral extracellular particles produced by a stably transfected mammalian cell line and their evaluation for a subunit vaccine. Vaccine. 20(7-8):1058-1067.
    Kroeger MA, McMinn PC. (2002) Murray Valley encephalitis virus recombinant subviral particles protect mice from lethal challenge with virulent wild-type virus. Arch Virol. 2002 Jun;147(6):1155-1172.
    Lescar J, Roussel A, Wien MW, Navaza J, Fuller SD, Wengler G, Wengler G, Rey FA. (2001) The Fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell. 105:137-148.
    Li Z, Glibowicka M, Joensson C, Deber CM. (1993) Conformational states of mutant M13 coat proteins are regulated by transmembrane residues. J Biol Chem. 268:4584-4587.
    Liao M, Kielian M. (2005) The conserved glycine residues in the transmembrane domain of the Semliki Forest virus fusion protein are not required for assembly and fusion. Virology. 332:430-437.
    Lin CW, Wu SC. (2003) A functional epitope determinant on domain III of the Japanese encephalitis virus envelope protein interacted with neutralizing-antibody combining sites. J Virol. 77:2600-2606.
    Lin YJ, Wu SC. (2005) Histidine at Residue 99 and the Transmembrane Region of the Precursor Membrane prM Protein Are Important for the prM-E Heterodimeric Complex Formation of Japanese Encephalitis Virus. J Virol. 79:8535-8544.
    Lindenbach BD, Rice CM (2001) Flaviviridae: the viruses and their replication. In Fields Virology, Knipe DM, Howley P. (ed) pp 991-1041. Philaephia: Lippincott-Raven
    Liu C, Eichelberger MC, Compans RW, Air GM. (1995) Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding. J Virol. 69:1099-1106.
    Lorenz IC, Allison SL, Heinz FX, Helenius A (2002) Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J Virol 76:5480-5491.
    Lorenz IC, Kartenbeck J, Mezzacasa A, Allison SL, Heinz FX, Helenius A (2003) Intracellular assembly and secretion of recombinant subviral particles from tick-borne encephalitis virus. J Virol 77:4370-4382.
    MacKenzie KR, Prestegard JH, Engelman DM. (1997) A transmembrane helix dimer: structure and implications. Science. 276:131-133.
    Mackenzie JM, Westaway EG. (2001) Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J Virol. 75:10787-10799.
    Mandl CW, Guirakhoo F, Holzmann H, Heinz FX, Kunz C. (1989) Antigenic structure of the flavivirus envelope protein E at the molecular level, using tick-borne encephalitis virus as a model. J Virol. 63:564-5671.
    Markoff L, Chang A, Falgout B (1994) Processing of flavivirus structural glycoproteins: stable membrane insertion of premembrane requires the envelope signal peptide Virology 204:526-540.
    Matsumura H, Futaesaku Y, Kohno S, Sugiura A, Kohase M. (1990) A temperature-sensitive mutant of Newcastle disease virus defective in intracellular processing of fusion protein. J Virol. 64:1410-1413.
    Mason PW, Pincus S, Fournier MJ, Mason TL, Shope RE, Paoletti E. (1991) Japanese encephalitis virus-vaccinia recombinants produce particulate forms of the structural membrane proteins and induce high levels of protection against lethal JEV infection. Virology. 180:294-305.
    Mebatsion T, Konig M, Conzelmann KK. (1996) Budding of rabies virus particles in the absence of the spike glycoprotein. Cell. 84:941-951.
    Melikyan GB, Markosyan RM, Roth MG, Cohen FS. (2000) A point mutation in the transmembrane domain of the hemagglutinin of influenza virus stabilizes a hemifusion intermediate that can transit to fusion. Mol Biol Cell. 11:3765-3775.
    Mendrola JM, Berger MB, King MC, Lemmon MA. (2002) The single transmembrane domains of ErbB receptors self-associate in cell membranes. J Biol Chem. 277:4704-4712.
    Michalak JP, Wychowski C, Choukhi A, Meunier JC, Ung S, Rice CM, Dubuisson J. (1997) Characterization of truncated forms of hepatitis C virus glycoproteins. J Gen Virol. 78:2299-2306.
    Mingarro I, Whitley P, Lemmon MA, von Heijne G. (1996) Ala-insertion scanning mutagenesis of the glycophorin A transmembrane helix: a rapid way to map helix-helix interactions in integral membrane proteins. Protein Sci. 5:1339-1341.
    Miyauchi K, Komano J, Yokomaku Y, Sugiura W, Yamamoto N, Matsuda Z. (2005) Role of the specific amino acid sequence of the membrane-spanning domain of human immunodeficiency virus type 1 in membrane fusion. J Virol. 79:4720-4729.
    Modis Y, Ogata S, Clements D, Harrison SC (2003) A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 100:6986-6991.
    Modis Y, Ogata S, Clements D, Harrison SC (2004) Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313-319.
    Morikawa S, Booth TF, Bishop DH. (1991) Analyses of the requirements for the synthesis of virus-like particles by feline immunodeficiency virus gag using baculovirus vectors. Virology. 183:288-297.
    Mukhopadhyay S, Kuhn RJ, Rossmann MG. (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol. 3:13-22.
    Mutoh E, Ishikawa T, Takamizawa A, Kurata T, Sata T, Kojima A. (2004) Japanese encephalitis subunit vaccine composed of virus-like envelope antigen particles purified from serum-free medium of a high-producer J12#26 cell clone. Vaccine 22: 2599-608.
    Op De Beeck A, Montserret R, Duvet S, Cocquerel L, Cacan R, Barberot B, Le Maire M, Penin F, Dubuisson J (2000) The transmembrane domains of hepatitis C virus envelope glycoproteins E1 and E2 play a major role in heterodimerization. J Biol Chem 275:31428-31437.
    Op De Beeck A, Molenkamp R, Caron M, Ben Younes A, Bredenbeek P, Dubuisson J (2003) Role of the transmembrane domains of prM and E proteins in the formation of yellow fever virus envelope. J Virol 77:813-820.
    Op De Beeck A, Rouille Y, Caron M, Duvet S, Dubuisson J. (2004) The transmembrane domains of the prM and E proteins of yellow fever virus are endoplasmic reticulum localization signals. J Virol. 78(22):12591-12602.
    Pincus S, Mason PW, Konishi E, Fonseca BA, Shope RE, Rice CM, Paoletti E. (1992) Recombinant vaccinia virus producing the prM and E proteins of yellow fever virus protects mice from lethal yellow fever encephalitis. Virology. 187:290-297.
    Pryor MJ, Azzola L, Wright PJ, Davidson AD (2004) Histidine 39 in the dengue virus type 2 M protein has an important role in virus assembly. J Gen Virol 85, 3627-3636.
    Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC. (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature. 375:291-298.
    Russ WP, Engelman DM. (2000) The GxxxG motif: a framework for transmembrane helix-helix association. J Mol Biol. 296:911-919.
    Schalich J, Allison SL, Stiasny K, Mandl CW, Kunz C, Heinz FX. (1996) Recombinant subviral particles from tick-borne encephalitis virus are fusogenic and provide a model system for studying flavivirus envelope glycoprotein functions. J Virol. 70:4549-4557.
    Senes A, Gerstein M, Engelman DM. (2000) Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J Mol Biol. 296:921-936.
    Sjoberg M, Garoff H. (2003) Interactions between the transmembrane segments of the alphavirus E1 and E2 proteins play a role in virus budding and fusion. J Virol. 77:3441-3450.
    Solomon T. (2004) Flavivirus encephalitis. N Engl J Med. 351:370-378.
    Stadler K, Allison SL, Schalich J, Heinz FX. (1997) Proteolytic activation of tick-borne encephalitis virus by furin. J Virol. 71:8475-8481.
    Stiasny K, Allison SL, Marchler-Bauer A, Kunz C, Heinz FX. (1996) Structural requirements for low-pH-induced rearrangements in the envelope glycoprotein of tick-borne encephalitis virus. J Virol. 70:8142-8147.
    Stiasny K, Allison SL, Mandl CW, Heinz FX. (2001) Role of metastability and acidic pH in membrane fusion by tick-borne encephalitis virus. J Virol. 75:7392-7398.
    Suomalainen M, Liljestrom P, Garoff H. (1992) Spike protein-nucleocapsid interactions drive the budding of alphaviruses. J Virol. 66:4737-4747.
    Tsai TF. (2000) New initiatives for the control of Japanese encephalitis by vaccination: minutes of a WHO/CVI meeting, Bangkok, Thailand, 13-15 October 1998. Vaccine. 18 Suppl 2:1-25.
    Ulmschneider MB, Sansom MS. (2001) Amino acid distributions in integral membrane protein structures. Biochim Biophys Acta. 1512:1-14.
    Vennema H, Godeke GJ, Rossen JW, Voorhout WF, Horzinek MC, Opstelten DJ, Rottier PJ. (1996) Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J. 15:2020-2028.
    Wang S, He R, Anderson R (1999) PrM- and cell-binding domains of the dengue virus E protein. J Virol 73:2547-2551.
    Weaver SC, Barrett AD. (2004) Transmission cycles, host range, evolution and emergence of arboviral disease. Nat Rev Microbiol. 2:789-801.
    Wengler G, Wengler G. (1989) Cell-associated West Nile flavivirus is covered with E+pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. J Virol. 63:2521-2526.
    Wu SC, Lian WC, Hsu LC, Liau MY (1997) Japanese encephalitis virus antigenic variants with characteristic differences in neutralization resistance and mouse virulence. Virus Res 51:173-181
    Wu SC, Lee SC (2001) Complete nucleotide sequence and cell-line multiplication pattern of the attenuated variant CH2195LA of Japanese encephalitis virus. Virus Res 73:91-102
    Yamshchikov VF, Compans RW (1993) Regulation of the late events in flavivirus protein processing and maturation. Virology. 192:38-51.
    Zhang Y, Corver J, Chipman PR, Zhang W, Pletnev SV, Sedlak D, Baker TS, Strauss JH, Kuhn RJ, Rossmann MG. (2003a) Structures of immature flavivirus particles. EMBO J. 22:2604-2613.
    Zhang W, Chipman PR, Corver J, Johnson PR, Zhang Y, Mukhopadhyay S, Baker TS, Strauss JH, Rossmann MG, Kuhn RJ. (2003b) Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol. 10:907-912.
    Zhang Y, Zhang W, Ogata S, Clements D, Strauss JH, Baker TS, Kuhn RJ, Rossmann MG. (2004) Conformational changes of the flavivirus E glycoprotein. Structure (Camb). 12:1607-1618.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE