簡易檢索 / 詳目顯示

研究生: 曾紹庭
Tseng, Shao-Ting
論文名稱: 應用於脈衝波雷達與無線感測器定位的可旋轉式環狀游標尺數位對時間轉換器
Rotatable Cyclic Vernier Digital-to-Time Converter for Impulse Radar and Localization between Wireless Sensors
指導教授: 朱大舜
CHU, TA-SHUN
口試委員: 吳仁銘
WU, JEN-MING
黃柏鈞
HUANG, PO-CHIUN
王毓駒
WANG, YU-JIU
廖育德
LIAO, YU-TE
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 136
中文關鍵詞: 脈衝波雷達數位對時間轉換器游標尺延遲線無線感測器無線定位
外文關鍵詞: Impulse Radar, Digital-to-Time Converter, Vernier Delay-Line, Wireless Sensor, Wireless Localization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷達的基礎應用原理始源於十九世紀晚期,物理學家赫茲發現電磁波具有會被電磁波強烈反射的特性。二十世紀初,此原理被應用於海上導航系統中,以預防船隻在視線不佳的情形下相互碰撞。而後,雷達一詞最早被載於美國海軍的監控系統之中。在二次世界大戰前後,因應戰爭期間的防空系統與對地面部隊戰車監測等需求,雷達技術開始迅速發展。戰後除了國防之外,雷達也開始大量應用於民生之中。從應用於大氣系統預測的氣象雷達、家用車內的防撞雷達、觀測地形地貌的合成孔徑雷達等,以至於近年來開始被大量關注的生醫長照領域,雷達都佔有一席之地。

    本論文提出了一可旋轉式環狀游標尺數位對時間轉換器,並將其應用於本論文提出之被動前端等效時間直接取樣式的脈衝波雷達系統。本論文所提出之數位對時間轉換器,除了具有游標尺數位對時間轉換器之高解析度特性外,還具有能與外部參考訊號源同步之特性,因而具有能應用於須多雷達單元間同步之應用的可能,如相位陣列雷達等。該時間對數位轉換器能在80 ns的時間範圍中提供了1.8 ps的最低有效位元時間解析度,量測所得之差動非線性度與積分非線性度分別為+4.3/-3與12.4/-9.4個最低有效位元數。

    本論文所提出之脈衝波雷達系統具有一接收端與一發射端,並由數位對時間轉換器控制接收與發射時間之相互關係。藉由等效時間直接取樣技術,與所提出之數位對時間轉換器,能在準靜態條件下等效達到30GS/s的取樣率,並且能於後端數位處理中重建接收到之波形,提供後端數位處理更高之訊號處理自由度。所提出之雷達系統被實現於65 nm CMOS製程中,所占面積為3.5 mm x 2.5 mm,總功耗為133 mW。

    此外,本論文也提出一利用所提出之等效時間直接取樣雷達系統架構與數位對時間取樣器,實現了無線感測器間相互定位距離之方法。該方法是基於對兩感測器間接收到的波形之相對關係的分析,並經由於時域中包含非理想特性之推導所提出。該提出之方法可於理論上達到與正常雷達操作下相同之解析度。無線量測之結果與推導中預測的行為結果相符,並證明藉由該方法能實現兩無線感測器間之距離定位。


    This dissertation presents a rotatable cyclic Vernier digital-to-time converter (DTC) with 1.8 ps timing resolution on an 80 ns time scale. The proposed DTC features high timing resolution, and can be utilized in beam-steering arrays, which is infeasible for ordinary Vernier DTCs. The proposed DTC was implemented within a passive time-equivalent direct-sampling ultrawideband impulse-radio radar system and was fabricated in 65 nm CMOS technology. This radar system is capable of quantizing direct-sampled impulse waveforms to provide full degrees of freedom for backend digital signal processing (DSP). The measured differential nonlinearity (DNL)/integral nonlinearity (INL) of the DTC was +4.6/-3 and 12.4/-9.4 where the LSB was 1.8 ps, and the total power consumption was 133 mW. Also, a new method for localization between wireless sensor nodes of equivalent-time direct-sampling radar is presented in this dissertation; this method can theoretically achieve resolution as high as that of regular radar.

    Also, a new method for localization between wireless sensor nodes of equivalent-time direct-sampling radar is presented in this dissertation. This method is based on the analysis on the relationship between two sensors and their received waveforms, which are captured by the equivalent-time direct-sampling feature of the proposed radar system. Mathematical time domain derivation is presented with analysis on effects of non-ideal effects. Theoretically, the proposed method can achieve resolution as high as that of regular radar. The wireless measurement result proves the waveform characteristics as predicted in the derivation, as well as the functionality of the proposed method.

    Contents vii List of Figures xi List of Tables xvii 1 Introduction . . . 1 1.1 Motivation . . . 1 1.2 Thesis Organization. . 4 2 Radar Categories . . . 5 2.1 Doppler Radars . . . 6 2.2 Frequency-Modulated Continuous Wave Radars . . . 10 2.3 Impulse Radars . . . 14 2.4 Summary. . . 18 3 Impulse Radar System Consideration . . . 21 3.1 Time of Fly Detection and Equivalent-Time Direct-Sampling Technique . . . 21 3.2 Direction of Arrival Detection. . . 25 3.3 System Signal-to-Noise Ratio . . . 28 3.4 Link-Budget Analysis . . . 30 4 Equivalent-Time Direct-Sampling Impulse-Radio Radar with Rotatable Cyclic Vernier Digital-to-Time Converter . . . 33 4.1 Digital-to-Time Converter . . . 33 4.1.1 Existing Digital-to-Time Converters 33 4.1.2 Rotatable Cyclic Vernier Digital-to-Time Converter . . . 35 4.2 Radar System Overview . . . 39 4.2.1 Time-Interleaved Passive Equivalent-Time Direct-Sampling Receiver . . . 40 4.2.2 TOF Estimation . . . 45 4.2.3 Capability of TX and RX Beam-Steering . . . 47 4.3 Circuit Implementation. . . 50 4.3.1 Rotatable Cyclic Vernier Digital-to-Time Converter . . . 50 4.3.1.1 Voltage-Controlled Oscillators . . . 53 4.3.1.2 Phase-Frequency Divider, Charge Pump and Loop Filter . . . 53 4.3.1.3 Frequency-Divider. . . 56 4.3.1.4 Digital-Time Shifter . . . 60 4.3.2 Receiver . . . 61 4.3.3 Transmitter . . 65 4.4 DTC Calibration. . . 69 4.4.1 Two-Level DTC Timing Disorder. . 69 4.4.2 Ambiguity in Sampling Edge. . . 78 4.5 Measurement Results . . . 81 5 Wireless Sensor Network Localization Based on Equivalent-Time Direct-Sampling Impulse-Radio Radars . . . 93 5.1 Introduction . . . 93 5.2 Operational principles . . . 96 5.3 Non-Ideals Effects. . . 103 5.3.1 Error from Unequal DTC Unit Size . . . 103 5.3.2 Error from Time Stamping Approximation . . . 107 5.3.3 Error from Unequal Points to Describe X(t) . . . 111 5.3.4 Pseudoconstant Frequency Approximation . . . 112 5.3.5 Error from Doppler Effect . . . 114 5.3.6 Effects from other Non-ideal Factors . . . 117 5.4 Measurement Results . . . 120 6 Conclusion and Future Work . . . 127 Bibliography . . . 129

    [1] O. Blumtritt, H. Petzold, and W. Aspray, “Tracking the history of radar,” 1994, ISBN: 0-78039987-0, IEEE-Rutgers Center for the History of Electrical Engineering.
    [2] P. H. Hildebrand, C. A. Walther, C. L. Frush, J. Testud, and F. Baudin, “The ELDORA/ASTRAIA airborne Doppler weather radar: goals, design, and first field tests,” Proc. IEEE, vol. 82, pp. 1873–1890, Dec. 1994.
    [3] M. A. Rico-Ramirez and I. D. Cluckie, “Classification of Ground Clutter and Anomalous Propagation Using Dual-Polarization Weather Radar,” IEEE Trans. Geosci. Remote Sens, vol. 46, no. 7, pp. 1892–1904, Jul. 2008.
    [4] F. S. Marzano, S. Barbieri, G. Vulpiani, and W. I. Rose, “Volcanic Ash Cloud Retrieval by Ground-Based Microwave Weather Radar,” IEEE Trans. Geosci. Remote Sens, vol. 44, no. 11, pp. 3235–3246, Nov. 2006.
    [5] S. Suchandt, H. Runge, H. Breit, U. Steinbrecher, A. Kotenkov, and U. Balss, “Automatic Extraction of Traffic Flows Using Terra SAR-X Along-Track Interferometry,” IEEE Trans. Geosci. Remote Sens, vol. 48, no. 2, pp. 807–819, Feb. 2010.
    [6] D. Cerutti-Maori, I. Sikaneta, and C. H. Gierull, “Optimum SAR/GMTI Processing and Its Application to the Radar Satellite RADARSAT-2 for Traffic Monitoring,” IEEE TGRS, vol. 50, no. 10, pp. 3868–3881, Oct. 2012.
    [7] R. Behrendt, “Traffic monitoring radar for road map calculation,” Proc. 17th Int. Radar Symp. (IRS), pp. 1–4, May 2016.
    [8] C. Florian, R. Cignani, A. Santarelli, F. Filicori, and F. Longo, “A 40 watt C-band MMIC high power amplifier for space radar application exploiting a 0.25 µm AlGaN/GaN on SiC process,” 2013 IEEE MTT-S Digest, pp. 1–4, Jun. 2013.
    [9] J. E. Palmer, B. Hennessy, M. Rutten, D. Merrett, S. Tingay, D. Kaplan, S. Tremblay, S. Ord, J. Morgan, and R. B. Wayth, “Surveillance of Space using passive radar and the Murchison Widefield Array,” IEEE Radar Conference, pp. 1715–1720, May 2017.
    [10] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “A Novel Vital Sign Sensor Based on a Self-Injection-Locked Oscillator,” IEEE Trans. Microw. Theory Techn. IMS2010 Special Issue, vol. 58, pp. 4112–4120, Dec. 2010.
    [11] C. Li, J. Ling, J. Li, and J. Lin, “Accurate Doppler Radar Non-Contact Vital Sign Detection Using the RELAX Algorithm,” IEEE Trans. Instrumentation and Measurement, vol. 59, pp. 687–695, Mar. 2010.
    [12] C. Li, X. Yu, C.-M. Lee, D. Li, L. Ran, and J. Lin, “High Sensitivity Software Configurable 5.8 GHz Radar Sensor Receiver Chip in 0.13 µm CMOS for Non-contact Vital Sign Detection,” IEEE Trans. Microw. Theory Techn. RFIC2009 Special Issue, vol. 58, pp. 1410–1419, May 2010.
    [13] P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng, and P. Hsu, “Vital-sign detection doppler radar based on phase locked self-injection oscillator,” Proc. IEEE MTT-S Int. Microw. Symp, pp. 1–3, Jun. 2012.
    [14] C. Li, V. Lubecke, O. Boric-Lubecke, and J. Lin, “A Review on Recent Advances in Doppler Radar Sensors for Noncontact Healthcare Monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046–2060, May 2013.
    [15] A. Rahman, E. Yavari, A. Singh, V. M. Lubecke, and O.-B. Lubecke, “A Low-IF Tag-Based Motion Compensation Technique for Mobile Doppler Radar Life Signs Monitoring,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 10, pp. 3034–3041, Oct. 2015.
    [16] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, pp. 114–117, Apr. 1965.
    [17] J. Zhou and S. Hoyos, “Asynchronous compressive multi-channel radar for interference-robust vehicle collision avoidance systems,” 2014 Texas-WMCS Symp, pp. 1–4, Apr. 2014.
    [18] Rodrigo Blázquez-García and Pablo Almorox-González and Mateo Burgos-García and Carlos Callejero-Andrés and Julio Pantoja-Domínguez and Ignacio Gómez-Maqueda, “Perimeter surveillance radar in W-band based on vehicle collision avoidance technology,” 2015 European WMCS Symp, pp. 273–276, Sep. 2015.
    [19] T.-H. Ho and S.-J. Chung, “Design and Measurement of a Doppler Radar With New Quadrature Hybrid Mixer for Vehicle Applications,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 1, pp. 1–8, Jan. 2010.
    [20] T. Jaeschke, C. Bredendiek, S. Küppers, and N. Pohl, “High-Precision D-Band FMCW-Radar Sensor Based on a Wideband SiGe-Transceiver MMIC,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 3582–3597, Dec. 2014.
    [21] D. Oh and J.-H. Lee, “Low-Complexity Range-Azimuth FMCW Radar Sensor Using Joint Angle and Delay Estimation Without SVD and EVD,” IEEE Sensors Journal, vol. 15, no. 9, pp. 4799–4811, Sep. 2015.
    [22] T. Mitomo, N. Ono, H. Hoshino, Y. Yoshihara, O. Watanabe, and I. Seto,“A 77 GHz 90 nm CMOS transceiver for FMCW radar applications,” IEEE J.Solid-State Circuits, vol. 45, pp. 928 – 937, Apr. 2010.
    [23] J. Lee, Y.-A. Li, M.-H. Hung, and S.-J. Huang, “A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology,” IEEE J.Solid-State Circuits, vol. 45, pp. 2746–2756, Dec. 2010.
    [24] C.-M. Lai, J.-M. Wu, P.-C. Huang, and T.-S. Chu, “A Scalable Direct-Sampling Broadband Radar Receiver Supporting Simultaneous Digital Multibeam Array in 65nm CMOS,” ISSCC Dig. Tec Papers, pp. 242–243, Feb. 2013.
    [25] Y.-H. Kao and T.-S. Chu, “A Direct-Sampling Pulsed Time-of-Flight Radar With Frequency-Defined Vernier Digital-to-Time Converter in 65 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2665–2677, Nov. 2015.
    [26] C.-M. Lai, K.-W. Tan, Y.-J. Chen, and T.-S. Chu, “A UWB Impulse-Radio Timed-Array Radar With Time-Shifted Direct-Sampling Architecture in 0.18-µm CMOS,” IEEE Trans. Circuits Syst. I: Regular Papers, vol. 61, no. 7, pp. 2074 – 2087, Jul. 2014.
    [27] T.-S. Chu, J. Roderick, S. Chang, T. Mercer, C. Du, and H. Hashemi, “A short-range UWB impulse-radio CMOS sensor for human feature detection,” ISSCC Dig. Tec Papers, pp. 294–296, Feb. 2011.
    [28] T. Terada, S. Yoshizumi, M. Muqsith, Y. Sanada, and T. Kuroda, “A CMOS ultra-wideband impulse radio transceiver for 1-Mb/s data com-
    munications and 2.5-cm range finding,” IEEE J.Solid-State Circuits, vol. 41, pp. 891–898, Apr. 2006.
    [29] D. Zito, D. Pepe, M. Mincica, F. Zito, A. Tognetti, A. Lanata, and D. De Rossi, “SoC CMOS UWB pulse radar sensor for contactless respiratory rate monitoring,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, pp. 503–510, Dec. 2011.
    [30] S.-T. Tseng, Y.-H. Kao, C.-C. Peng, J.-Y. Liu, S.-C. Chu, G.-F. Hong, C.-H. Hsieh, K.-T. Hsu, W.-T. Liu, Y.-H. Huang, S.-Y. Huang, and T.-S. Chu, “A 65-nm CMOS Low-Power Impulse Radar System for Human Respiratory Feature Extraction and Diagnosis on Respiratory Diseases,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 4, pp. 1029–1041, Apr. 2016.
    [31] S.-T. Tseng, H.-C. Chou, B.-S. Hu, Y.-H. Kao, Y.-H. Huang, and T.-S. Chu,“Equivalent-Time Direct-Sampling Impulse-Radio Radar With Rotatable Cyclic Vernier Digital-to-Time Converter for Wireless Sensor Network Localization,” IEEE Trans. Microw. Theory Techn., pp. 1–24, Jul. 2017, DOI: 10.1109/TMTT.2017.2718510.
    [32] C. Zhang, M. J. Kuhn, B. C. Merkl, A. E. Fathy, and M. R., “Real-Time Noncoherent UWB Positioning Radar With Millimeter Range Accuracy: Theory and Experiment,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 1, pp. 9–20, Jan. 2010.
    [33] C. Liu, Q. Li, Y. Li, X.-D. Deng, X. Li, H. Liu, and Y.-Z. Xiong, “A Fully Integrated X-Band Phased-Array Transceiver in 0.13-µm SiGe BiCMOS Technology,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 2, pp. 575–584, Feb. 2016.
    [34] Q. Ma, D. M. W. Leenaerts, and P. G. M. Baltus, “Silicon-Based True-Time-Delay Phased-Array Front-Ends at Ka-Band,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 9, pp. 2942–2952, Sep. 2015.
    [35] H. Kim, “Double-sided two-way ranging algorithm to reduce ranging time,” IEEE Communications Letters, vol. 13, no. 7, pp. 486–488, Jul. 2009.
    [36] M. Kwak and J. Chong, “A new Double Two-Way Ranging algorithm for ranging system,” Proc. IEEE Int. Conf. Netw. Infrastruct. Digit. Content, pp. 470–473, Sep. 2010.
    [37] I. Nissinen, A. Mantyniemi, and J. Kostamovaara, “A CMOS time-to-digital converter based on a ring oscillator for a laser radar,” Proc. ESS-
    CIRC’03, pp. 469–472, Sep. 2003.
    [38] K. Määttä and J. Kostamovaara, “A high-precision time-to-digital converter for pulsed time-of-flight laser radar applications,” IEEE Trans. Instrum. Meas., vol. 47, no. 2, pp. 521–536, Apr. 1998.
    [39] D. Genschow, “A time to digital converter for use in ultra wide band Radar sensor nodes,” IEEE Topical Meeting on Wireless Sensors and Sensor Networks, pp. 38–40, Jan. 2015.
    [40] H. Moyer, J. Lynch, J. Schulman, R. Bowen, J. Schaffner, A. Kurdoghlian, and T. Hsu, “A low noise chipset for passive millimeter wave imaging,” IEEE MTT Int. Microwave Symp. Dig, pp. 1363–1366, Jun. 2007.
    [41] J. Lynch, H. Moyer, J. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. Yoon, and J. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microw. Theory Techn.,
    vol. 56, pp. 1592–1600, Jul. 2008.
    [42] S. Geng, D. Liu, Y. Li, H. Zhuo, W. Rhee, and Z. Wang, “A 13.3 mW 500 Mb/s IR-UWB Transceiver With Link Margin Enhancement Technique for Meter-Range Communications,” IEEE J.Solid-State Circuits, pp. 669–678, Mar. 2015.
    [43] B. Francois and P. Reynaert, “A transformer-coupled true-RMS power detector in 40nm CMOS,” ISSCC Dig. Tec Papers, pp. 30–31, Feb. 2014.
    [44] C. Falsi, D. Dardari, L. Mucchi, and M. Z. Win, “Range Estimation in UWB Realistic Environments,” Proc. IEEE Int. Conf. Commun. (ICC),
    vol. 12, pp. 5692–5697, Jun. 2006.
    [45] J.-Y. Lee and R. A. Scholtz, “Ranging in a dense multipath environment using an UWB radio link,” IEEE Transactions on Selected Areas in Communications, vol. 20, no. 9, pp. 1677–1683, Dec. 2002.
    [46] R.-J. Yang and S.-I. Liu, “A 40–550 MHz Harmonic-Free All-Digital Delay-Locked Loop Using a Variable SAR Algorithm,” IEEE Journal of
    Solid-State Circuits, vol. 42, no. 2, pp. 361–373, Feb. 2007.
    [47] S. Sievert, O. Degani, A. Ben-Bassat, R. Banin, A. Ravi, W. Thomann, B.-U. Klepser, Z. Boos, and D. Schmitt-Landsiedel, “A 2 GHz 244 fs-Resolution 1.2 ps-Peak-INL Edge Interpolator-Based Digital-to-Time Converter in 28 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 51, pp. 2992–3004, Dec. 2016.
    [48] J. Z. Ru, C. Palattella, P. Geraedts, E. Klumperink, and B. Nauta, “A High-Linearity Digital-to-Time Converter Technique: Constant-Slope Charging,” IEEE Journal of Solid-State Circuits, vol. 50, pp. 1412–1423, Jun. 2015.
    [49] N. Markulic, K. Raczkowski, P. Wambacq, and J. Craninckx, “A 10-bit,550-fs step Digital-to-Time Converter in 28nm CMOS,” Proc. 40th Eur. Solid State Circuits Conf. (ESSCIRC), pp. 79–82, Nov. 2014.

    QR CODE