研究生: |
陳啟科 CHEN CHI-KO |
---|---|
論文名稱: |
微流體振盪器研發與生物螢光法檢測 Design of Microfluidic Oscillators and Diagnosis with Fluorescence Methods |
指導教授: |
楊鏡堂
YANG JING-TANG |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 149 |
中文關鍵詞: | 孔逹效應 、微射流元件 、微混合器 、螢光共振能量傳遞現象 |
外文關鍵詞: | Microfluidic oscillator□, FRET, micro-LIF, Micro flowmeter |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主旨在研發微流體振盪器,目標是埋入微全分析系統中作為微流量感測元件或是微流體混合反應器。首先以流場可視化實驗法觀測並歸納流場結構,包括主噴流、回饋流與渦流區,其中渦流區又可分為主渦流、次渦流與小渦流,深入了解流場形態後得知主渦流與次渦流的輪替頻率等於主噴流的振盪頻率,小渦流在回饋流道入口形成閥門效應,時序性調控回饋流的物理量,並且小渦流閥門效應是主噴流擺盪之啟動機制與穩定振盪機制的中繼點。振盪器的幾何變數研究是透過實驗量測壓力擾動頻譜,進行傅利葉轉換,經統計振盪頻率與範圍後,歸納接觸壁面擴張角應為20-30度之間,分流器為銳角並為80-90度之間,接觸壁面形狀應為階梯型,原因是階梯型結構可調控主渦流的尺度與位置,有利於主噴流擺盪與小渦流閥門效應發生,有效縮短不穩定振盪的時間,提昇振盪頻譜的訊雜比,增廣工作範圍,但不可避免有較高的壓損。
經由巨觀流體力學實驗的累積,本研究已能掌控流體振盪器的設計概念,後續研發出一型展新的微流體振盪器作為微流量計或微反應器使用,利用微機電技術SU-8光阻黃光微影和聚二甲基矽氧烷翻製成型再接合的製程實現小量生產,實驗以微觀流場分析與雷射共軛焦技術進行,結果顯示微流體振盪器的流量感測範圍廣泛,工作範圍在雷諾數等於1-100之間,除了可整合至微全析系統中,更可朝於體內即時偵測或體內自動投藥裝置等構想發展。微流體擺盪現象在本文中進一步地被利用於增益流體混合,生物螢光法檢測流體經由振盪過程提高的混合反應效能,利用螢光共振現象(fluorescent resonance energy transfer, FRET)切入微觀混合指標的研究,驗証微流體振盪器以單一元件造成的流體擺盪運動,可提昇流體反應速率到逹80 %以上。
本文研發的微流體振盪器,經實驗與模擬分析、微機電製程和生物螢光法檢測,証實其工作範圍廣泛,並且可藉由主動式的流體擺動,大幅度提昇反應效益,有貢獻於流量感測與微混合等研究領域,研究過程中應用之研究方法-螢光共振法,也有助於微流體工程的研究。
To measure a micro flow rate and to accelerate the reaction between proteins by an unbalanced impingement of feedback flow, we have proposed and verified the design of a self-flapping microfluidic oscillator. Three specific features – the large aspect ratio of the micro-nozzle, the structure of the sudden-expansion inlet and the asymmetric feedback channels – are developed to induce stable oscillation. The large aspect ratio of the micro-nozzle diminishes the influence of viscous force, and the inlet structure triggers flow instability. The conjunction of both factors promotes the occurrence of the Coanda effect, and initiates oscillation. The asymmetric feedback channels produce an unbalanced impingement of the inlet flow, thus reinforcing the initial oscillation to become stably periodic.
Beyond the function of a micro flowmeter, the oscillatory characteristics are applicable to accelerate the biochemical reaction between two fluorescent proteins, B-phycoerythrin (BPE) and an Allophycocyanin alpha subunit (ApcA). With fluorescence induced with a laser, we detected the proteins at a specific wavelength to define the region of interaction caused by the oscillatory motions, which clearly enhances the rate of reaction of these fluids. To focus on the reaction phenomenon of twin fluids, we demonstrated biotin-streptavidin binding that was detected via a fluorescence-resonance-energy-transfer (FRET) pair of fluorescent proteins. The FRET signal demonstrated conclusively that that biochemical reaction was promoted through the oscillatory function.
Boucher, R. F., 1995, “Minimum Flow Optimization of Fluidic Flowmeters,” Measurement Science Technology, Vol. 6, pp. 872-879.
Camci, C. and Herr, F., 2002, “Forced Convection Heat Transfer Using a Self-Oscillating Impinging Planar Jet,” Journal of Visualization, Vol. 120, pp. 770-782.
Carver, A., and Brunson, C., 2002, “Fluidic Oscillation Measurement,” Research Report of C & I Gas Measurement.
Chang, K. T., and Huang, R. F., 2004, “Development and Characterization of Jet-Injected Vee-Gutter,” Journal of Mechanics, Vol. 1, pp. 57-63.
Chen, C. K., Wang, L., Yang, J. T., and Chen, L. T., 2006, “Experimental and Computational Analysis of Periodic Flow Structure in an Oscillatory Gas Flow Meter,” Journal of Mechanics, Vol. 22, pp. 137-144.
Czaplewski, D. A., Ilic, B. R., Zalalutdinov, M., Olbricht, W. L., Zehnder, A. T., Craoghead, H. G., and Michalske, T. A., 2004, “A Micromechanical Flow Sensor for Microfluidic Applications,” IEEE/ASME Journal of Microelectromechanical Systems, Vol. 13, pp. 576-585.
Durst, F., Melling, A., and Whitelaw, J. H., 1974, “Low Reynolds Number Flow Over a Plane Symmetric Sudden Expansion,” Journal of Fluids Engineering, Vol. 64, pp. 111-128.
Durst, F., Pereira, J. C. F., and Tropea, C., 1993, “The Plane Symmetric Sudden-Expansion Flow at Low Reynolds Numbers,” Journal of Fluid Mechanics, Vol. 248, pp. 567-581.
Enoksson, P., Stemme, G., and Stemme, E., 1997, “A Silicon Resonant Sensor Structure for Coriolis Mass-flow,” IEEE/ASME Journal of Microelectromechanical Systems, Vol. 6, pp. 119-125.
Enoksson, P., Stemme, G., and Stemme, E., 1995, “Fluid Density Sensor Based on Resonance Vibration,” Sensors and Actuators A: Physical, Vol. A46-47, pp. 327-331.
Figliola, R. S., and Beasley, D. E., 1995, “Theory and Design for Mechanical Measurement,” 2nd Edition, Wiley, New York, pp. 79-169.
Gebhard, U., Hein, H., and Schmidt, U., 1996, “Numerical Investigation of Fluidic Micro-Oscillators,” Journal of Micromechanics and Microengineering, Vol. 6, pp. 115-117.
Gebhard U., Hein H., and Ruther P., 1997, “Combination of a Fluidic Micro-Oscillator and Micro-Actuator in LIGA-Technique for Medical Application,” International Conference on Solid-State Sensors and Actuators Chicago, June 16-19.
Grant, J., and Cox, A. J., 1975, “Flowmeters,” US Patent, No. 3902367.
Groisman, M. Enzelberger, and S. R. Quake, 2003, “Microfluidic memory and control devices,” Science, Vol. 300, pp. 955-958.
Herzl, P. J., and Morrisville, P., 1985, “Oscillatory Flowmeter,” US Patent, No. 4550614.
Ho, C. H., and Hsu, W., 2004, “Experimental Investigation of an Embedded Root Method for Stripping SU-8 Photoresist in the UV-LIGA Process,” Journal of Micromechanics and Microengineering, Vol. 14, pp. 356-364.
Ho, C. H., Chin, K. P., Yang, C. R., Wu, H. M., and Chen, S. L., 2002, “Ultrathick SU-8 Mmold Fabrication and Removal, and Its Application to the Fabrication of LIGA-like Micromotors with Embedded Roots,” Sensors and Actuators A Physical, Vol. 102, pp. 130-138.
Ho, C. M., and Tai, Y. C., 1998, “Micro-Electro-Micromechanical Systems (MEMS) and Fluid Flows,” Annual Review Fluid Mechanics, Vol. 30, pp. 579-612.
Honda. S., 2000, “On the Role of a Target and Side Walls to Fluidic Oscillation,” Faculty of Science & Technology, Keio University Hiyoshi 3-14-1, Kohoku, Yokohama, pp. 223-8522, Japan.
Hu, I. C., Lee, T. R., Lin, H. F., Chiueh, C. C., and Lyu, P. C., 2006, “Biosynthesis of Fluorescent Allophycocyanin Alpha-subunits by Autocatalytic Bilin Attachment,” Biochemistry, in revision.
Huang, R. F., and Lin, C. L., 1995, “Vortex Shedding and Shear-Layer Instability of Wing at Low-Reynolds Numbers,” AIAA Journal, Vol. 33, pp. 1398-1430.
Jeon, M., Kim. L., Noh. J., Kim. S., Park. G., and Woo, S., 2005, “Design and Characterization of a Passive Recycle Micromixer,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 346-351.
Kirsch, K., Subramaniam, V., Jenei, A., and Jovin, T. M., 1999, “Fluorescence Resonance Energy Transfer Detected by Scanning Near-field Optical Microscopy,” Journal of Microscopy, Vol. 194, pp. 448-454.
Lee, G. B., Kuo, T. Y., and Wu, W. Y., 2002, “A Novel Micromachined Flow Sensor Using Periodic Flapping Motion of a Planar Jet Impinging on a V-shaped Plate,” Experimental Thermal and Fluid Science, pp. 435-444.
Li. D., 2004, “The Small Flow Becomes Main Stream,” Microfluid and Nanofluid, Vol. 1, pp. 1-1.
Liu, R. H., Stremier, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H., and Beebe, D. J., 2000, “Passive Mixing in a Three-dimensional Serpentine Microchannel,” IEEE/ASME Journal of Microelectromechanical Systems, Vol. 9, pp. 190-197.
Liu, Y. C., and Chiang, A. S., 2003, “High-resolution Confocal Imaging and Three-dimensional Rendering,” Methods, Vol. 1, pp. 86-93.
Okabayashi, and M., Haruta, M., 1986, “Fluidic Flowmeter,” US Patent, No. 4610162.
Roberts, M. A., Rossier, J. S., Bercier, P., and Girault, H., 1997 “UV Laser Machined Polymer Substrates for the Development of Microdiagnostic Systems,” Analytical Chemistry, Vol. 69, pp. 2035-2042.
Simoes, E., Furlan, R., Leminski. E., Gongora-Rubio. M., Pereira, T., Morimoto. N., and Aviles, J., 2005, “Microfluidics Oscillator for Gas Flow Control and Measurement,” Measurement Science and Technology, Vol. 16, pp. 7-11.
Stouffer, R. D., and Bower, R., 1998, “Fluidic Flow Meter with Fiber Optic Sensor,” US Patent, No. 5827976.
Stroock, A.D., Dertinger, S. K. W., Ajdari, A., Mezic, I., Stone, H. A., and Whitesides, G. M., 2002, “Chaotic Mixer for Microchannels,” Science, Vol. 295, pp. 647-651.
Stroock, A.D., Dertinger, S. K. W., Whitesides, G. M., and Ajdari, A., 2002, “Patterning Flows Using Grooved Surfaces,” Analytical Chemistry, Vol. 74, pp. 5306-5312.
Strouhal, V. 1878, “Uber eine besoudere Art der Tonerregung,” Annalen der Physik und Chemie, Vol. 5, pp. 216-251.
Svedin, N., Kalvesten, E., and Stemme, G., 2003, “A New Edge-defected Lift Force Sensor,” IEEE/ASME Journal of Microelectromechanical Systems, Vol. 12, pp. 344-354.
Tippetts, J. R., Ng, H. K., and Royle, J. K., 1973, “A Fluidic Flowmeter,” Automatica, Vol. 9, pp. 35-45.
Tippetts, J. R., Ng, H. K., and Royle, J. K., 1973, “An Oscillating Bistable Fluid Amplifier for Use as A Flowmeter,” Journal of Fluid Control, Vol. 5, pp. 28-42.
Tritton, D. J., 1988, Physical Fluid Dynamics, 2nd Edition, Oxford University Press, New York, pp. 150-152.
Tsai, J. H., and Lin, L., 2002, “A Thermal-Bubble-Actuated Micronozzle- Diffuser Pump,” IEEE/ASME Journal of Microelectromechanical System, Vol. 11, pp. 665-671.
Ueda, M., Nakanishi, H., Tabata, O., and Baba, Y., 2000, ”Imaging of a band for DNA fragment migrating in microchannel on integrated micro chip,” Materials Science and Engineering, Vol. 12, pp. 33-36.
Uzol, O., and Camci, O., 2001, “Experimental and Computer Visualization and Frequency Measurements of the Jet Oscillation inside A Fluidic Oscillator,” The 4th International Symposium on Particle Image Velocimetry, Germany, September, pp. 17-19.
Vollmer, J., Hein, H., Menz, W., and Walter, F., 1994, “Bistable Fluidic Elements in LIGA Technique for Flow Control in Fluidic Microactuators,” Sensors and Actuators A: Physical, Vol. 43, pp. 330-337.
Wang, H., Beck, S. B. M., Priestman, G. H., and Boucher, R. F., 1997, “Fluidic Pressure Pulse Transmitting Flowmeter,” Trans. I. Chem. E. Chemical Engineering Research and Design, Vol. 75, Part A, pp. 381-391.
Wang, H., Beck, S. B. M., Priestman, G. H., and Boucher, R. F., 1998, “A Remote Measuring Flow Meter for Petroleum and Other Industrial Applications,” Measurement Science Technology, Vol. 9, pp. 779-789.
Wang, L., and Yang, J. T., 2006, “An Overlapping Crisscross Micromixer Using Chaotic Mixing Principle,” Journal of Micromechanics and Microengineering, Vol. 16, pp. 2684-2691.
Wang, L., Yang, J. T., and Lyu, P. C., 2007, “An Overlapping Crisscross Micromixer,” Chemical Engineering Science, Vol. 62, pp. 711-720.
White, F. M., 1991, Viscous Fluid Flow, 2nd Edition, McGraw-Hill, New York, pp. 10-11.
Wille, R., and Fernholz, H., 1965, “Report on the First European Mechanics Colloquium, on the Coanda Effect,” Journal of Fluid Mechanics, Vol. 23, pp. 801-819.
Wright, P. H., 1980, “The Coanda Meter-A Fluidic Digital Gas Flowmeter,” Journal of Physics E: Science Instrument, Vol. 13, pp. 433-436.
Yamasaki, H., and Honda, S., 1981, “An Unified Approach to Hydrodynamic Oscillator Type Flowmeters,” Journal of Fluid Control, Vol. 13, pp. 1-17.
Yang, J. T., and Lin K. W., “Mixing and Separation of Two-phase Flow in A Micro Planar Serpentine Channel,” Journal of Micromechanics and Microengineering, Vol. 16, pp. 2439-2448.
Yang, J. T., Chen, C. K., Tsai, K. J., Lin, W. Z., and Sheen, H. J., 2007, “The Novel Fluidic Oscillator,” Sensors and Actuators A: Physical, Vol. 135, pp. 476-483.
Yang, J. T., Chen, C. K., and Tsai, K. J., 2003, “Hydrodynamic Analysis of Fluidic Oscillators,” the 2nd Japan-Taiwan Work Shop on Mechanical and Aerospace Engineering, Tokyo, Japan, October 17-20.
Yang, J. T., Huang, K. J., and Chen, A. C., 2004, “Microfabrication and Laser Diagnosis of a Pressure Swirl Micro Atomizer,” IEEE/ASME Journal of Microelectromechanical Systems, Vol. 13, pp. 843-850.
Yang, J. T., Huang, K. J., and Lin, Y. C., 2005, “Geometric Effects on Fluid Mixing in Passive Grooved Micromixer,” Lab on a Chip, Vol. 5, pp. 1140-1147.
Yang, J. T., Lin, W. C., Tsai, K. J., and Sheen, H. J., 2002, “Hydrodynamic Analysis and Design of Fluidic Oscillators,” Proceedings of the 19th National Conference on Mechanical Engineering, Huwei, Taiwan, pp. 127-133.
王儷霖, 2006, 交叉重疊式凹槽微混合器之設計與流場分析, 博士論文, 國立清華大學動力機械工程學系。
林國偉, 2006, 雙流體混合機制之數值模擬及實驗分析, 博士論文,國立清華大學動力機械工程學系。
蔡惠菁, 2006, 奈/皮升級液珠之切割研究, 碩士論文, 國立清華大學動力機械工程學系。
黃科志, 2005, 渦漩調控式微混合器之混合機制之研究, 博士論文,國立清華大學動力機械工程學系。
張國棟, 2004, 受自激振盪射流調制之V型鈍體尾流, 博士論文,國立台灣科技大學機械工程系。
蔡昆志, 2003, 射流振盪器之流場分析與微混合器應用設計, 碩士論文, 國立清華大學動力機械工程學系。
林威志, 2002, 射流振盪器之設計與PIV分析,碩士論文, 國立清華大學動力機械工程學系。
楊東拾, 2001, 微粒子影像測速儀於微流場中之應用, 碩士論文,國立台灣大學應用力學研究所。
楊鏡堂, 陳啟科, 蔡昆志, 2007, 微型流體振盪器, 中華民國發明專利第I274856號。
楊鏡堂, 蔡昆志, 陳啟科, 2005, 異向沖擊型流體振盪器, 中華民國發明專利公告號第200714807號。
楊鏡堂, 林威志, 蔡昆志, 2003, 階梯式振盪流量計, 中華民國發明專利公告號第00576503。
植木孝, 酒井克人, 神田廣一, 神谷秀夫, 1994, 射流氣體流量計, 中華民國新型專利第234550號。
服部達雄, 植木孝, 酒井克人, 石川登志樹, 新美征洋, 1992, 流體流量計(D), 中華民國新型專利第180513號。
服部達雄, 植木孝, 酒井克人, 石川登志樹, 新美征洋, 大池英行, 1992, 流體流量計(A), 中華民國新型專利第180969號。