研究生: |
唐嘉宏 |
---|---|
論文名稱: |
Hierarchical Bayesian Image Reconstruction for Emission Tomography Using Dependent Likelihood 使用相依概似函數之階層貝氏放射斷層影像重建法 |
指導教授: |
許文郁
許靖涵 |
口試委員: |
盧鴻興
陳鄰安 蕭穎聰 鄭少為 周呈霙 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 108 |
中文關鍵詞: | 放射式斷層掃瞄 、統計影像重建 、階層貝式模型 、馬可夫隨機場 、最大事後機率 |
外文關鍵詞: | Emission Computed Tomography, Statistical Image Reconstruction, Hierarchical Bayesian Model, Markov Random Field, Maximum a Posteriori |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
放射式斷層掃瞄 (Emission Computed Tomography)是一種非侵入式的醫學成像技術,它可以為全身生理功能的運作提供影像,為現今臨床診斷中最重要且應用範圍廣泛的影像工具之一。由於資料的不完整性,影像的重建可藉由統計的最大概似估計,得到較佳的影像品質。絕大多數的放射式斷層掃瞄統計影像重建法,是以Poisson分配來描述在每個像素點的放射計數量,並以此導出:在每個像素點Poisson參數給定的條件下,實際所收集到的資料為獨立的Poisson分配,然後利用統計方法,尋找每個像素點所對應的Poisson分配的平均數的估計值,具此重建影像。
雖然以條件獨立(conditional independent)的Poisson模型來描述光子對的放射偵收過程是適當的。但當我們重建影像的方法是以估計每個像素點的放射計數量,而非像素點所對應的Poisson分配的參數(即平均數)時,則發現資料模型不再是條件獨立的Poisson模型- 相關性將被引入到資料中,導致資料模型為一組相依的隨機變數。
在本論文中,我們以估計每個像素點的放射計數量,而非像素點所對應的Poisson分配平均數的觀點,提出一個,結合相依的概似函數與具有局部變化的權重參數的quadratic pairwise difference事前機率(prior probability)階層貝式模型,來重建PET影像。另一方面,本文亦提出一個簡化相關性資料計算複雜度的作法,並搭配有效率的演算法,達到改善影像品質又保有最佳計算效率的雙重成效。
透過模擬與實際的PET資料,我們所提出的階層貝式模型在影像的對比與雜訊的抑制上,相較於MLEM演算法,有較佳的視覺影像品質。
Emission computed tomography is a non-invasive functional imaging technique that is nowadays widely applied in medical diagnostic imaging, especially to determine physiological function. The available set of measurements is, however, often incomplete and corrupted, and the quality of image reconstruction is enhanced by the computation of a statistically optimal estimate. Most statistical reconstruction methods for emission tomography use the conditionally independent Poisson model to measure fidelity to data.
Although the conditionally independent Poisson model is appropriate for a conceptual view of PET imaging, once the reconstruction problem is to estimate the number of emissions in each pixel, the stochastic nature of the emission process is no longer Poisson and the measurement data are no longer independent. Correlations are introduced into the measurement model, which result in dependent random variables.
In this dissertation, we propose a hierarchical Bayesian model which combines a dependent likelihood function and the quadratic pairwise difference prior with locally varying weighting hyerparameters to reconstruct image in terms of emission counts in pixels. This dissertation addresses the second concern, seeking to simplify the reconstruction of correlated data and provide a more precise image estimate than the conventional independent methods.
We apply and test the proposed hierarchical Bayesian model with two PET data sets. The reconstructed images reveal that the proposed hierarchical Bayesian model produces reconstruction with superior visual quality to MLEM in terms of contrast and noise artifact suppression.
Alessio, A. M., Kinahan, P. E. and Lewellen, T. K. (2006), Modeling and Incorporation of System Response Functions in 3-D Whole Body PET. IEEE Transactions on Medical Imaging. 25, 828-837.
Besag, J. (1974), Spatial interaction and the statistical analysis of lattice systems (with discussion). Journal of the Royal Statistical Society,Series B. 36, 192–225.
Besag, J. (1977), Efficiency of pseudolikelihood estimation for simple Gaussian fields. Biometrika. 64, 616-618.
Besag, J. (1986), On the Statistical Analysis of Dirty Pictures (with discussion). Journal of the Royal Statistical Society. Ser. B, 48, 259–302.
Besag, J., Green, P. J., Higdon, D. M. and Mengersen, K. (1995), Bayesian computation and stochastic systems (with discussion). Statistical Science. 10, 3-66.
Bouman, C. A. and Sauer, k. (1993), A generalized Gaussian image model for edge-preserving map estimation. IEEE Transactions on Image Processing. 2, 296-310.
Bouman, C. A. and Sauer, K. (1996), A unified approach to statistical tomography using coordinate descent optimization. IEEE Transactions on Image Processing. 5, 480-492.
Butler, K. and Stephens, M. (1993), The Distribution of a Sum of Binomial Random Variables. Technical Report, No. 467, Department of Statistics, Stanford University.
Colsher, J. G. (1980), Fully 3-dimensional positron emission tomography. Physics in Medicine and Biology. 25, 103-15.
Cressie, N. (1993), Statistics for spatial data, Wiley Interscience.
Delaney, A. H. and Bresler, Y. (1998), Globally Convergent Edge-Preserving Regularized Reconstruction: An Application to Limited-Angle Tomography. IEEE Transactions on Image Processing. 4, 204-221.
Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977), Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 34, 1-38.
De Pierro, A.R. (1993), On the relation between the ISRA and the EM algorithm for positron emission tomography. IEEE Transactions on Medical Imaging. 12, 328-333.
De Pierro, A. R. (1995), A modied expectation maximization algorithm for penalized likelihood estimation in emission tomography. IEEE Transactions on Medical Imaging. 14, 132-137.
Fessler, J. A. (1994), Penalized weighted least-squares image reconstruction for positron emission tomography. IEEE Transactions on Medical Imaging. 13, 290-300.
Fessler, J. A., Clinthorne, N. H. and Rogers, W. L. (1992), Regularized emission image reconstruction using imperfect side information. IEEE Transactions on Nuclear Science. 39, 1464-1471.
Frese, T., Rouze, N. C., Bouman, C. A., Sauer, K. and Hutchins, G. D. (2003), Quantitative Comparison of FBP, EM, and Bayesian Reconstruction Algorithms for the IndyPET Scanner. IEEE Transactions on Medical Imaging. 22, 258–276.
Geman, S., and Geman, D. (1984), Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence. 6, 721-741.
Geman, S. and McClure, D. (1985), Bayesian image analysis: An application to single photon emission tomography. Proceedings of the Statistical Computing Section, 12-18.
Geman, S. and McClure, D. E. (1987), Statistical methods for tomographic image reconstruction. Proceedings of the 46th Session of the International Statistical Institute, Bulletin of the ISI. 52.
Gindi, G., Lee, M., Rangarajan, A., and Zubal, I.G. (1993), Bayesian reconstruction of functional images using anatomical information as priors. IEEE Transactions on Medical Imaging. 12, 670-680.
Green, P. J. (1990), Bayesian Recon from Emission Tomography using a modified EM. IEEE Transactions on Medical Imaging. 9, 84-93.
Hebert, T. and Leahy, R. (1989), A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs Priors. IEEE Transactions in Medical Imaging. 8, 194-202.
Higdon, D. M., Bowsher, J. E., Johnson, V.E., Turkington, T.G., Gilland, D.R., Jaszczak, R.J. (1997), Fully Bayesian estimation of Gibbs hyperparameters for emission computed tomography data. IEEE Transactions on Medical Imaging. 16, 516-526.
Hudson, H. M. and Larkin, R. S. (1994), Accelerated image reconstruction using ordered subsets of projection data. IEEE Transactions in Medical Imaging. 13, 601-609.
Johnson, V. E., Wong, W. H., Hu, X. and Chen, C. T. (1991), Bayesian restoration of PET images using Gibbs priors Information. Processing in Medical Imaging. 15-28.
Lange, K. and Carson R. (1984), EM reconstruction algorithms for emission and transmission tomography. Journal of Computer Assisted Tomography. 8, 306-16
Lange, K. (1990), Convergence of EM image reconstruction algorithms with Gibbs smoothing. IEEE Transactions on Medical Imaging. 9, 439-446.
Lewitt, R. M. and Muehllehner, G. (1986), Accelerated iterative reconstruction for Positron Emission Tomography based on the EM Algorithm for maximum likelihood estimation. IEEE Transactions on Medical Imaging. 5, 16-22.
Llacer, J. and Veklerov, E. (1989), Feasible images and practical stopping rules for iterative algorithms in emission tomography. IEEE Transactions in Medical Imaging. 8, 186–193.
Llacer, J., Andreae, S. and Chatterjee, A. (1986), On the applicability of the maximum likelihood estimator algorithm for image recovery in accelerated positron emitter beam injection. Proceedings of the Society of Photo-Optical Instrumentation Engineers. 671, 269-276.
Miller, M. I., Snyder, D. L. and Moore, S. M. (1986), An evaluation of the use of sieves for producing estimates of radioactivity distributions with EM algorithm for PET. IEEE Transactions on Nuclear Science. 33, 492-495.
Nuyts, J., D. Beque, D., Dupont, P. and Mortelmans, L. (2002), A Concave Prior Penalizing Relative Differences for Maximum-a-posteriori Reconstruction in Emission Tomography. IEEE Transactions on Nuclear Science. 49, 56-60.
Panin, V. Y., Kehren, F., Rothfuss, H., Hu, D., Michel, C. and Casey, M. E. (2006), PET Reconstruction with System Matrix Derived from Point Source Measurements. IEEE Transactions on Nuclear Science. 53, 152-159.
Qi, J., Leahy, R. M., Cherry, S. R., Chatziioannou, A. and Farquhar, T. H. (1998), High-resolution 3D Bayesian Image Reconstruction Using the MicroPET Small-Animal Scanner. Physics in Medicine and Biology. 43, 1001-1013.
Richard M. Leahy, R. M. and Yan, X. ( 1991), Incorporation of Anatomical MR Data for Improved Dunctional Imaging with PET. Information Processing in Medical Imaging Lecture Notes in Computer Science. 511, 105-120.
Rockmore, A. J. and Macovski, A. (1976), A maximum likelihood approach to emission image reconstruction from projections. IEEE Transactions on Nuclear Science. 23, 1428-1432.
Sauer, K. and Bouman, C. A. (1993), A local update strategy for iterative reconstruction from projections. IEEE Transactions on Signal Processing. 41, 534-548.
Schultz, R. R. and Stevenson, R. L. (1994), A Bayesian approach to image expansion for improved definition. IEEE Transactions on Image Processing. 3, 233- 242.
Selivanov, V. V., Picard, Y., Cadorette, J., Rodrigue, S. and Lecomte, R. (2000) Detector Response Models for Statistical Iterative Image Reconstruction in High Resolution PET. IEEE Transactions on Nuclear Science. 47, 1168-1175.
Snyder, D. and Miller, M. (1985), The Use of Sieves to Stabilize Images Produced with the EM Algorithm for Emission Tomography. Transactions on Nuclear Science. 32, 3864–3871.
Snyder, D. L., Miller, M. I., Thomas, L. J., and Politte, D. G. (1987), Noise and Edge Artifacts in Maximum-Likelihood Reconstruction for Emission Tomography. IEEE Transactions in Medical Imaging. vol. MI-6, 228-238
Shepp, L. A. and Vardi, Y. (1982), Maximum Likelihood Reconstruction in Positrin Emission Tomography. IEEE Transactions in Medical Imaging. 1, 113-122.
Strul, D., Slates, R. B., Dahlbom, M., Cherry, S. R. and Marsden, P. K. (2003), An Improved Analytical Detector Response Function Model for Multilayer Small-diameter PET Scanners. Physics in Medicine and Biology. 48, 979–994.
Terstegge, A., Weber, S., Herzog, H., Muller-Gartner, H. W. and Halling, H. (1997), High Resolution and Better Quantification by Tube of Response Modelling in 3D PET Reconstruction. IEEE Nuclear Science Symposium, Medical Imaging Conference. 3, 1603-1607.
Tohme, M. S. and Qi, J. Y. (2009), Iterative Image Reconstruction for Positron Emission Tomography Based on a Detector Response Function Estimated from Point Source Measurements. Physics in Medicine and Biology. 54, 3709-3725.
Vardi, Y., L. A. Shepp, L. A., L. Kaufman, L. (1985), A Statistical Model for Positron Emission Tomography. Journal of the American Statistical Association. 80, 8-20.