簡易檢索 / 詳目顯示

研究生: 李豪捷
Lee, Hao Chieh
論文名稱: 改善液晶顯示器之大尺寸非晶矽薄膜電晶體的電特性
Improved Electrical Characteristics of Large-Sized Amorphous Silicon Thin-Film Transistors for Liquid Crystal Display
指導教授: 張廖貴術
Chang-Liao, Kuei-Shu
口試委員: 謝嘉民
Shieh, Jia-Min
吳永俊
Wu, Yung-Chun
趙天生
Chao, Tien-Sheng
劉致為
Liu, Chee Wee
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 134
中文關鍵詞: 非晶矽薄膜電晶體製程改善中大尺寸非晶矽薄膜電晶體電特性閘極驅動電路門檻電壓飄移
外文關鍵詞: Amorphous silicon thin-film transistor, process improvements, large-sized a-Si TFTs, electrical characteristics, gate driver on array substrate, threshold voltage shift
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非晶矽薄膜電晶體(a-Si TFT) 因在大面積基板上有好的均勻度、低製程溫度、以及高生產良率, 而成為主動式矩陣液晶顯示器(AMLCD)的主流技術。 近幾年為了降低成本的考量, 於顯示器的應用上, 在玻璃基板上使用中大尺寸非晶矽薄膜電晶體當閘極驅動電路 (gate driver circuits) 吸引了不少的注意力。 玻璃基板上積體化閘極驅動電路 (GOA) 的生命週期與特性主要被大尺寸非晶矽薄膜電晶體的電特性所影響, 例如長時間操作下的門檻電壓飄移 (△Vth)。 在本篇論文中, 為了改善大尺寸非晶矽薄膜電晶體的電特性, 我們廣泛地探討製程改善方法並評估這些製程對元件電特性的影響。 再者, 為了符合積體化閘極驅動電路元件實際使用在玻璃基板上的狀況, 本篇論文中討論的大尺寸非晶矽薄膜電晶體, 其通道寬度 (channel width) 在 1000 到 10000微米的範圍。
    首先, 我們使用並探討了一種最佳化製程整合閘極絕緣層 (GI) 跟本質非晶矽層 (intrinsic a-Si layer) 到大尺寸非晶矽薄膜電晶體的製程上。 我們也設計了不同通道寬度的元件來研究元件尺寸的影響。 根據實驗結果, 我們觀察到大尺寸非晶矽薄膜電晶體的初始電特性, 如電流-電壓特性, 並沒有被最佳化製程整合影響。 我們也量測了不同溫度底下, 元件的漏電流 (Ioff)。 我們發現最佳化製程整合可以讓大尺寸非晶矽薄膜電晶體漏電流顯著下降, 這是因為漏電流的活化能 (Ea) 上升。 此外, 我們將高、低電場的直流電應力施加在元件閘極上, 來研究最佳化製程整合對元件不穩定性的影響。 從實驗數據中發現, 使用了最佳化製程整合後, 大尺寸非晶矽薄膜電晶體的門檻電壓飄移能有效的下降。 再者, 在高和低電場電應力下, 元件門檻電壓飄移的主因都是本質非晶矽層內的缺陷產生。
    第二部分, 為了進一步改善大尺寸非晶矽薄膜電晶體的電特性, 我們分別利用氫氣在本質非晶矽層沉積前對閘極絕緣層做前通道處理 (FCT), 以及在本質非晶矽層沉積後對元件背通道做處理 (BCT)。 然而, 根據我們的實驗結果, 發現前通道處理製程會使元件的門檻電壓飄移更惡化, 這是因為影響門檻電壓飄移的主因是本質非晶矽層內的缺陷產生, 而對閘極絕緣層做前通道處理無法減少缺陷的產生。 此外, 由我們的數據顯示, 對閘極絕緣層做前通道處理製程可能對元件通道的表面產生傷害, 使得元件穩定性變差, 而無法改善元件的門檻電壓飄移。 不過, 當我們對元件使用背通道處理並最佳化製程時間, 我們觀察到大尺寸非晶矽薄膜電晶體的漏電流和受過高、低電場應力下的門檻電壓飄移都顯著的減少。 由漏電流的數據顯示, 我們發現較短或是較長時間的背通道處理製程並不利於降低元件的漏電流。 而從門檻電壓飄移的數據看到, 元件在受過高電場應力後, 影響元件門檻電壓飄移的主要機制是非晶矽層內的缺陷產生, 而不是閘極絕緣層內的電荷捕捉所主導, 這跟先前文獻所提的狀況不同。 這個不同可能是因為元件閘極絕緣層內膜質和先前文獻不同, 而和元件尺寸無關。


    Amorphous silicon thin-film transistor (a-Si TFT) is the mainstream technique for active-matrix liquid crystal display (AMLCD), due to a good uniformity over large-area substrates, low process temperature, and a high production yield. In recent years, for cost-reduction consideration, using medium- and large-sized a-Si TFTs to form the gate driver circuits integrated on array glass substrate has attracted a lot of attention in display application. The lifetime and performance of integrated gate driver on array substrate (GOA) are dominated by the electrical characteristics of large-sized a-Si TFTs, such as threshold voltage shift (△Vth) under a long-term operation. In this thesis, to improve the electrical characteristics of large-sized a-Si TFTs, we extensively studied the process improvements and evaluated the influences of these processes on the electrical performance of devices. In addition, the channel width of large-sized a-Si TFTs studied in this thesis is ranged from 1000 to 10000 µm for being comparable to practical devices used in GOA.
    At first, an optimal process integration on GI and intrinsic a-Si layer of large-sized a-Si TFTs was applied and investigated. Different channel widths were designed to discuss the effect of sample size. Based on the experimental results, it was observed that the initial electrical characteristics of large-sized a-Si TFT were not influenced by optimal process integration, such as current-voltage characteristics. The off current (Ioff) of devices at different temperatures were measured as well. It was found that Ioff of large-sized a-Si TFTs could be remarkably reduced by optimal process integration, since the activation energy (Ea) of Ioff was increased. In addition, the DC stresses with high and low electrical fields were applied on the gate electrode of devices to study the instability influenced by the application of optimal integration. It was experimentally found that △Vth of large-sized a-Si TFTs could be effectively reduced by optimal process integration. In addition, the defect generation in a-Si layer was the dominated mechanism for the △Vth of devices under high and low electrical-field stresses.
    In the second part, to achieve further enhancements of electrical characteristics for large-sized a-Si TFTs, a front-channel treatment (FCT) with hydrogen gas on GI layer prior to the deposition of intrinsic a-Si layer and a back-channel treatment (BCT) with hydrogen gas after the deposition of intrinsic a-Si layer were applied and investigated, respectively. However, based on our experimental results, it was found that the △Vth of devices was more by the FCT, since the dominated mechanism of △Vth was defect generation in a-Si layer, which would not be reduced by the FCT on GI layer. In addition, from the observation of our data, the FCT on GI layer might cause damage to the surface of channel for devices, leading to a worse stability, instead of reducing the △Vth of devices. Besides, by applying BCT and optimizing the process time, it was observed that Ioff and △Vth of large-sized a-Si TFTs after high and low electrical-field stresses were remarkably decreased. For the experimental results of Ioff, it was found that a shorter or a longer BCT process time for devices were unsuitable for reducing the Ioff of devices. As for the results of △Vth, the dominated mechanism responsible for △Vth of devices after a high electrical-field stress was defect generation in a-Si layer rather than charge trapping in GI layer, which is different from previous studies. The difference may be caused by the different GI quality of devices, not the sample size.

    摘要 i Abstract iii 致謝 v Contents vi Table Captions ix Figure Captions xi Chapter 1 Introduction 1 1.1 General Background 1 1.2 Overview of Large-Sized a-Si Thin Film Transistors 5 1.3 Thesis Outline 7 Chapter 2 Characterization and Fabrication of Large-Sized a-Si TFT Devices 21 2.1 a-Si TFT Structure 21 2.2 Plasma Enhanced Chemical Vapor Deposition (PECVD) Process 23 2.3 Large-Sized a-Si TFT Fabrication 24 2.4 Characterization of Large-Sized a-Si TFT in GOA 26 2.5 Extraction Methods of Device Parameters 27 2.5.1 Determination of the Threshold Voltage 28 2.5.2 Determination of the Subthreshold Slope 28 2.5.3 Instability Mechanisms of Devices 29 2.5.4 Determination of the Dangling Bond Density (△NDB) in a-Si Layer and the Trapped Charge Density (△nt) in GI Layer 31 2.5.5 Determination of the Activation Energy (Ea) for Ioff and the Setting of DC Stress 33 Chapter 3 Optimal Process Integration of Gate Insulator and a-Si Layers in Large-Sized a-Si Thin-Film-Transistor 50 3.1 Introduction 50 3.2 Experimental 52 3.2.1 Sample Preparation 53 3.2.2 Mechanisms and Measurements 54 3.3 Results and Discussion 55 3.3.1 Current-Voltage Characteristics of Large-Sized a-Si TFT 55 3.3.2 Instability Characteristics of Large-Sized a-Si TFT 56 3.4 Conclusions 59 Chapter 4 Front-Channel Treatment in H2 on Electrical Characteristics of Large-Sized a-Si Thin-Film-Transistor 72 4.1 Introduction 72 4.2 Devices Fabrication 74 4.3 Results and Discussion 75 4.4 Conclusions 78 Chapter 5 Improved Electrical Characteristics of Large-Sized a-Si Thin-Film Transistor by Back Channel Treatment in H2 85 5.1 Introduction 85 5.2 Devices Fabrication 87 5.3 Results and Discussion 89 5.3.1 Current-Voltage Characteristics of Large-Sized a-Si TFT 90 5.3.2 Mechanisms for Vth Shift under Different Electrical-Field Stresses 90 5.3.3 Electrical Characteristics of Devices after High Electrical-Field Stresses 92 5.3.4 Electrical Characteristics of Devices after Low Electrical-Field Stresses 93 5.4 Conclusions 93 Chapter 6 Conclusions and Suggestions for Future Work 102 6.1 Conclusions 102 6.2 Suggestions for Future Work 104 References 106

    [1] D.-S. Kim, S.-E. Lee, S.-J. Nam, and O.-K. Kwon, “A power-efficient driving method for in-plane switching-mode TFT-LCD using a negative liquid crystal,” Journal of Display Technology, Vol. 10, No. 12, pp. 1093, 2014.
    [2] C. Liao, C. He, T. Chen, D. Dai, S. Chung, T. S. Jen, and S. Zhang, “Design of integrated amorphous-silicon thin-film transistor gate driver,” Journal of Display Technology, Vol. 9, No. 1, pp. 7, 2013.
    [3] E. H. Lee, A. Indluru, D. R. Allee, L. T. Clark, K. E. Holbert, and T. L. Alford, “Effects of gamma irradiation and electrical stress on a-Si:H thin-film transistors for flexible electronics and displays,” Journal of Display Technology, Vol. 7, No. 6, pp. 325, 2011.
    [4] Y. Li, C.-H. Hwang, C.-L. Chen, S. Yan, and J.-C. Lou, “UV illumination technique for leakage current reduction in a-Si:H thin-film transistors,” IEEE Trans. On Electron Devices, Vol. 55, No. 11, pp. 3314, 2008.
    [5] M. Mativenga, J. K. Um, D. H. Kang, R. K. Mruthyunjaya, J. H. Chang, G. N. Heiler, T. J. Tredwell, and J. Jang, “Edge effects in bottom-gate inverted staggered thin-film transistors,” IEEE Trans. On Electron Devices, Vol. 59, No. 9, pp. 2501, 2012.
    [6] S. Hoehla, S. Garner, M. Hohmann, O. Kuhls, X. Li, A. Schindler, and N. Fruehauf, “Active matrix color-LCD on 75 μm thick flexible glass substrates,” Journal of Display Technology, Vol. 8, No. 6, pp. 309, 2012.
    [7] Y. Ukai, “TFT-LCD manufacturing technology - current status and future prospect,” Physics of Semiconductor Devices, Mumbai, India, pp. 29, 2007.
    [8] J.-H. Woo, J.-G. Lee, Y.-H. Jun, and B.-S. Kong, “Accurate quadruple-gamma-curve correction for line inversion-based mobile TFT-LCD driver ICs,” IEEE Trans. On Consumer Electronics, Vol. 59, No. 3, pp. 443, 2013.
    [9] C.-W. Chen, T.-C. Chang, P.-T. Liu, H.-Y. Lu, K.-C. Wang, C.-S. Huang, C.-C. Ling, and T.-Y. Tseng, “High-performance hydrogenated amorphous-Si TFT for AMLCD and AMOLED applications,” IEEE Electron Device Letters, Vo. 26, No. 10, pp. 731, 2005.
    [10] A. Risteska, K.-Y. Chan, A. Gordijn, H. Stiebig, and D. Knipp, “Electrical stability of high-mobility microcrystalline silicon thin-film transistors,” Journal of Display Technology, Vol. 8, No. 1, pp. 27, 2012.
    [11] S. Sambandan, L. Zhu, D. Striakhilev, P. Servati, and A. Nathan, “Markov model for threshold-voltage shift in amorphous silicon TFTs for variable gate bias,” IEEE Electron Device Letters, Vo. 26, No. 6, pp. 375, 2005.
    [12] A. Z. Kattamis, I-C. Cheng, K. Long, B. Hekmatshoar, K. H. Cherenack, S. Wagner, J. C. Sturm, S. M. Venugopal, D. E. Loy, S. M. O’Rourke, and D. R. Allee, “Amorphous silicon thin-film transistor backplanes deposited at 200 ℃ on clear plastic for lamination to electrophoretic displays,” Journal of Display Technology, Vol. 3, No. 3, pp. 304, 2007.
    [13] S. J. Ashtiani, G. R. Chaji, and A. Nathan, “AMOLED pixel circuit with electronic compensation of luminance degradation,” Journal of Display Technology, Vol. 3, No. 1, pp. 36, 2007.
    [14] C.-W. Han, M.-K. Han, M.S. Kim, W.-J. Nam, S.-J. Bae, K.-Y. Kim and I.-J. Chung, “Top-emitting OLED pixel employing cathode-contact structure with a-Si:H thin-film transistors,” Electronics Letters, Vo. 43, No. 11, pp. 623, 2007.
    [15] B. Hekmatshoar, A. Z. Kattamis, K. H. Cherenack, K. Long, J.-Z. Chen, S. Wagner, J. C. Sturm, K. Rajan, and M. Hack, “Reliability of active-matrix organic light-emitting- diode arrays with amorphous silicon thin-film transistor backplanes on clear plastic,” IEEE Electron Device Letters, Vo. 29, No. 1, pp. 63, 2008.
    [16] S. Morisaki, S. Hayashi, Y. Fujita, and S. Higashi, “Improvement in characteristic variability of TFTs using grain growth control by micro thermal plasma jet irradiation on a-Si strips,” Journal of Display Technology, Vol. 10, No. 11, pp. 950, 2014.
    [17] M. Yang, N. P. Papadopoulos, W. S. Wong, and M. Sachdev, “A novel voltage- programmed pixel circuit utilizing VT-dependent charge-transfer to improve stability of AMOLED display,” Journal of Display Technology, Vol. 9, No. 12, pp. 957, 2013.
    [18] B.-H. You, J.-H. Lee, and M.-K. Han, “Polarity balanced driving scheme to suppress the degradation of Vth in a-Si:H TFT due to the positive gate bias stress for AMOLED,” Journal of Display Technology, Vol. 3, No. 1, pp. 40, 2007.
    [19] Y. Li, K.-F. Lee, I-H. Lo, C.-H. Chiang, and K.-Y. Huang, “Dynamic characteristic optimization of 14 a-Si:H TFTs gate driver circuit using evolutionary methodology for display panel manufacturing,” Journal of Display Technology, Vol. 7, No. 5, pp. 274, 2011.
    [20] C.-L. Lin, C.-D. Tu, M.-C. Chuang, and J.-S. Yu, “Design of bidirectional and highly stable integrated hydrogenated amorphous silicon gate driver circuits,” Journal of Display Technology, Vol. 7, No. 1, pp. 10, 2011.
    [21] C.-L. Lin, M.-H. Cheng, C.-D. Tu, and M.-C. Chuang, “Highly reliable integrated gate driver circuit for large TFT-LCD applications,” IEEE Electron Device Letters, Vol. 33, No. 5, pp. 679, 2012.
    [22] H.-L. Chen, W.-J. Chen, P.-Y. Liu, K.-H. Cheng, M.-S. Lai, C.-W. Wang, and C.-T. Liu, “Universal bias dependence of excess current induced by self-heating effect for a-Si:H TFTs,” IEEE Trans. On Electron Devices, Vol. 54, No. 5, pp. 1238, 2007.
    [23] L.-W. Chu, P.-T. Liu, and M.-D. Ker, “Design of integrated gate driver with threshold voltage drop cancellation in amorphous silicon technology for TFT-LCD application,” Journal of Display Technology, Vol. 7, No. 12, pp. 657, 2011.
    [24] D. R. Allee, L. T. Clark, B. D. Vogt, R. Shringarpure, S. M. Venugopal, S. G. Uppili, K. Kaftanoglu, H. Shivalingaiah, Z. P. Li, J. J. R. Fernando, E. J. Bawolek, and S. M. O’Rourke, “Circuit-level impact of a-Si:H thin-film-transistor degradation effects,” IEEE Trans. On Electron Devices, Vol. 56, No. 6, pp. 1166, 2009.
    [25] J. W. Choi, J. I. Kim, S. H. Kim, and J. Jang, “Highly reliable amorphous silicon gate driver using stable center-offset thin-film transistors,” IEEE Trans. On Electron Devices, Vol. 57, No. 9, pp. 2330, 2010.
    [26] C.-L. Lin, C.-D. Tu, C.-E. Wu, C.-C. Hung, K.-J. Gan, and K.-W. Chou, “Low-power gate driver circuit for TFT-LCD application,” IEEE Trans. On Electron Devices, Vol. 59, No. 5, pp. 1410, 2012.
    [27] E. K.-H. Yu, R. Zhang, L. Bie, A. Kuo, and J. Kanicki, “Dynamic response of a-InGaZnO and amorphous silicon thin-film transistors for ultra-high definition active-matrix liquid crystal displays,” Journal of Display Technology, Vol. 11, No. 5, pp. 471, 2015.
    [28] Z. Hu, C. Liao, W. Li, L. Zeng, C.-Y. Lee, and S. Zhang, “Integrated a-Si:H gate driver with low-level holding TFTs biased under bipolar pulses,” IEEE Trans. On Electron Devices, Vol. 62, No. 12, pp. 4044, 2015.
    [29] C.-L. Lin, M.-H. Cheng, C.-D. Tu, C.-E. Wu, and F.-H. Chen, “Low-power a-Si:H gate driver circuit with threshold-voltage-shift recovery and synchronously controlled pull-down scheme,” IEEE Trans. On Electron Devices, Vol. 62, No. 1, pp. 136, 2015.
    [30] Y. Kuo, “Thin film transistors with graded SiNx gate dielectrics,” J. Electrochem. Soc., Vol. 141, No. 4, pp. 1061, 1994.
    [31] K. Kobayashi, H. Murai, M. Hayama, and T. Yamazaki, “The application of hydrogenation to amorphous silicon thin film transistors for the decrease of the off current,” Mat. Res. Soc. Symp. Proc., Vol. 219, pp. 321, 1991.
    [32] D. B. Thomasson, M. Dayawansa, J. H. Chang, and T. N. Jackson, “Thin active layer a–Si:H thin-film transistors,” IEEE Electron Device Letters, Vol. 18, No. 3, pp. 117, 1997.
    [33] Y. Kuo, “Plasma etching and deposition for a-Si:H thin film transistors,” J. Electrochem. Soc., Vo. 142, No. 7, pp. 2486, 1995.
    [34] Y. Kuo, “Plasma enhanced chemical vapor deposited silicon nitride as a gate dielectric film for amorphous silicon thin film transistors - a critical review,” Vacuum., Vo. 51, No. 4, pp. 741, 1998.
    [35] S. W. Tsao, T. C. Chang, P. C. Yang, S. C. Chen, J. Lu, M. C. Wang, C. M. Huang, W. C. Wu, W. C. Kuo, and Y. Shi, “Temperature influence on photo-leakage-current characteristics of a-Si:H thin-film transistor,” Solid-State Electronics, Vol. 54, Issue. 6, pp. 642, 2010.
    [36] M. J. Powell, “The physics of amorphous-silicon thin-film transistors,” IEEE Trans. On Electron Devices, Vol. 36, No. 12, pp. 2753, 1989.
    [37] K. Hiranaka, T. Yoshimura, and T. Yamaguchi, “Effects of the deposition sequence on amorphous silicon thin-film transistors,” Jpn. J. Appl. Phys., Vol. 28, No. 11, pp. 2197, 1989.
    [38] N. Ibaraki, K. Fukuda, and H. Takata, “The effect of interface states on amorphous-silicon transistors,” IEEE Trans. On Electron Devices, Vol. 36, No. 12, pp. 2971, 1989.
    [39] Y. Kuo, “Thin-film transistors with multistep deposited amorphous silicon layers,” Appl. Phys. Lett., Vol. 67, No. 15, pp. 2173, 1995.
    [40] Y. Takeuchi, Y. Katoh, Y. Uchida, W. I. Milne and M. Matsumura, “Ultra-thin film a-Si:H transistors,” J. Non-Cryst. Solids, Vo. 77-78, pp. 1397, 1985.
    [41] A. Kuo, T. K. Won, and J. Kanicki, “Advanced multilayer amorphous silicon thin-film transistor structure : film thickness effect on its electrical performance and contact resistance,” Jpn. J. Appl. Phys., Vo. 47, No. 5, pp. 3362, 2008.
    [42] M. L. Chabinyc, W. S. Wong, A. C. Arias, S. Ready, R. A. Lujan, J. H. Daniel, B. Krusor, R. B. Apte, A. Salleo, and R. A. Street, “Printing methods and materials for large-area electronic devices,” Proceedings of the IEEE, Vol. 93, No. 8, pp. 1491, 2005.
    [43] Y.-T. Yang, T. K. Won, S. Y. Choi, T. Takehara, Y. Nishimura, and J. M. White, “The latest plasma-enhanced chemical-vapor deposition technology for large-size processing,” Journal of Display Technology, Vol. 3, No. 4, pp. 386, 2007.
    [44] A. Z. Kattamis, K. H. Cherenack, B. Hekmatshoar, I-C. Cheng, H. Gleskova, J. C. Sturm, and S. Wagner, “Effect of SiNx gate dielectric deposition power and temperature on a-Si:H TFT stability,” IEEE Electron Device Letters, Vol. 28, No. 7, pp. 606, 2007.
    [45] N. Lustig, and J. Kanicki, “Gate dielectric and contact effects in hydrogenated amorphous silicon-silicon nitride thin-film transistors,” J. Appl. Phys., Vo. 65, No. 10, pp. 3951, 1989.
    [46] Y. Kuo, Thin Film Transistors : Materials and Processes vol. 1, Kluwer, New York, pp. 204, 2004.
    [47] J. K. Yoon, Y. H. Jang, B. K. Kim, H. S. Choi, B. C. Ahn, and C. Lee, “Voltage dependence of off current in a-Si:H TFT under backlight illumination,” J. Non-Cryst. Solids, Vo. 164-166, pp. 747, 1993.
    [48] T.-S. Chang, T.-C. Chang, P.-T. Liu, T.-S. Chang, C.-H. Tu, and F.-S. Yeh, “Improvement of hydrogenated amorphous-silicon TFT performances with low-k siloxane-based hydrogen silsesquioxane (HSQ) passivation layer,” IEEE Electron Device Letters, Vol. 27, No. 11, pp. 902, 2006.
    [49] J.-W. Tsai, C.-Y. Huang, Y.-H. Tai, H.-C. Cheng, F.-C. Su, F.-C. Luo, and H.-C. Tuan, “Reducing threshold voltage shifts in amorphous silicon thin film transistors by hydrogenating the gate nitride prior to amorphous silicon deposition,” Appl. Phys. Lett., Vo. 71, No. 9, pp. 1237, 1997.
    [50] B. C. Lim, Y. J. Choi, J. H. Choi, and J. Jang, “Hydrogenated amorphous silicon thin film transistor fabricated on plasma treated silicon nitride,” IEEE Trans. On Electron Devices, Vol. 47, No. 2, pp. 367, 2000.
    [51] H. Lee, J.-S. Yoo, C.-D. Kim, I.-B. Kang, and J. Kanicki, “Hexagonal a-Si:H TFTs : a new advanced technology for flat-panel displays,” IEEE Trans. On Electron Devices, Vol. 55, No. 1, pp. 329, 2008.
    [52] S. Inoue, H. Ohshima, and T. Shimoda, “Analysis of threshold voltage shift caused by bias stress in low temperature poly-Si TFTs,” IEDM Tech. Dig., pp. 527, 1997.
    [53] S. G. Kang, S. C. Bae, and S. Y. Choi, “The effect of back channel hydrogen plasma treatment on the electrical characteristics of amorphous thin film transistors,” Appl. Phys. Lett., Vol. 77, No. 8, pp. 1188, 2000.
    [54] C.-C. Shih, Y.-S. Lee, K.-L. Fang, C.-H. Chen, and F.-Y. Gan, “A current estimation method for bias-temperature stress of a-Si TFT device,” IEEE Trans. Device and Materials Reliability, Vol. 7, No. 2, pp. 347, 2007.
    [55] B. Hekmatshoar, K. H. Cherenack, S. Wagner, and J. C. Sturm, “Amorphous silicon thin-film transistors with DC saturation current half-life of more than 100 years,” IEEE IEDM, pp. 89, 2008.
    [56] M. Oudwan, A. Abramov, D. Daineka, and P. R. i Cabarrocas, “Mechanisms of threshold voltage shift in polymorphous and microcrystalline silicon bottom gate thin-film transistors,” Journal of Display Technology, Vol. 8, No. 1, pp. 23, 2012.
    [57] S. M. Jahinuzzaman, A. Sultana, K. Sakariya, P. Servati, and A. Nathan, “Threshold voltage instability of amorphous silicon thin-film transistors under constant current stress,” Appl. Phys. Lett., Vol. 87, Issue. 2, pp. 023502-1, 2005.
    [58] A. A. Fomani and A. Nathan, “Metastability mechanisms in thin film transistors quantitatively resolved using post-stress relaxation of threshold voltage,” J. Appl. Phys., Vo. 109, Issue. 8, pp. 084521-1, 2011.
    [59] M. J. Powell, C. V. Berkel, and J. R. Hughes, “Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors,” Appl. Phys. Lett., Vo. 54, No. 14, pp. 1323, 1989.
    [60] S. Sambandan, and A. Nathan, “Equivalent circuit description of threshold voltage shift in a-Si:H TFTs from a probabilistic analysis of carrier population dynamics,” IEEE Trans. On Electron Devices, Vol. 53, No. 9, pp. 2306, 2006.
    [61] K. S. Karim, A. Nathan, M. Hack, and W. I. Milne, “Drain-bias dependence of threshold voltage stability of amorphous silicon TFTs,” IEEE Electron Device Letters, Vo. 25, No. 4, pp. 188, 2004.
    [62] K. S. Karim, “Pixel architectures for digital imaging using amorphous silicon technology,” University of Waterloo, Ph. D. Thesis, 2002.
    [63] C. V. Berkel, and M. J. Powell, “Resolution of amorphous silicon thin-film transistor instability mechanisms using ambipolar transistors,” Appl. Phys. Lett., Vo. 51, No. 14, pp. 1094, 1987.
    [64] S. H.-L. Chen, M. Shih, C. Chuang and K. Y. Lin, “An analytical model with bi-energetic trap level for activation-energy of turn-on a-Si:H TFT,” J. Kore. Phys. Soc., Vo. 48, pp. S72, 2006.
    [65] C.-L. Lin, M.-H. Cheng, C.-D. Tu, C.-C. Hung, and J.-Y. Li, “2-D–3-D switchable gate driver circuit for TFT-LCD applications,” IEEE Trans. On Electron Devices, Vol. 61, No. 6, pp. 2098, 2014.
    [66] H. Dun, P. Pan, F. R. White, and R. W. Douse, “Mechanisms of plasma-enhanced silicon nitride deposition using SiH4/N2 mixture,” J. Electrochem. Soc., Vo. 128, No. 7, pp. 1555, 1981.
    [67] M. Kondo, M. Fukawa, L. Guo, and A. Matsuda, “High rate growth of microcrystalline silicon at low temperatures,” J. Non-Cryst. Solids, Vo. 266-269, pp. 84, 2000.
    [68] Y. Kaneko, A. Sasano, and T. Tsukada, “Characterization of instability in amorphous silicon thin-film transistors,” J. Appl. Phys., Vo. 69, No. 10, pp. 7301, 1991.
    [69] G.-T. Zheng, P.-T. Liu, M.-C. Wu, L.-W. Chu, and M.-C. Yang, “Design of bidirectional and low power consumption gate driver in amorphous silicon technology for TFT-LCD application,” Journal of Display Technology, Vol. 9, No. 2, pp. 91, 2013.
    [70] M. J. Powell, C. V. Berkel, I. D. French, and D. H. Nicholls, “Bias dependence of instability mechanisms in amorphous silicon thin-film transistors,” Appl. Phys. Lett., Vol. 51, No. 16, pp. 1242, 1987.
    [71] N.-X. Huang, H. R. Han, W. T. Liao, C. H. Huang, W. C. Wang, M.-S. Shiau, C.-H. Cheng, H.-C. Wu, H.-S. Hsu, J. J. Liou, S.-S. Liao, R.-C. Sun, G.-B. Lu, and D.-G. Liu, “Integrated amorphous-Si TFT circuits for gate drivers on LCD panels,” IEEE 10th International Conference on ASIC, 2013.
    [72] M. Nakamizo, M. Yonemaru, Y. Iwase, and T. Fukaya, “A low power consumption and high reliability architecture for a-Si TFT gate driver on glass,” SID, Digest, p. 28, 2010.
    [73] A. Kuo, T. K. Won, and J. Kanicki, “Advanced amorphous silicon thin-film transistors for AM-OLEDs : electrical performance and stability,” IEEE Trans. On Electron Devices, Vol. 55, No. 7, pp. 1621, 2008.
    [74] C. Liao, C. He, T. Chen, D. Dai, S. Chung, T. S. Jen, and S. Zhang, “Implementation of an a-Si:H TFT gate driver using a five-transistor integrated approach,” IEEE Trans. On Electron Devices, Vol. 59, No. 8, pp. 2142, 2012.
    [75] C. Liao, Z. Hu, D. Dai, S. Chung, T. S. Jen, and S. Zhang, “A compact bi-direction scannable a-Si:H TFT gate driver,” Journal of Display Technology, Vol. 11, No. 1, pp. 3, 2015.
    [76] C.-H. Chiang and Y. Li, “Design, fabrication and characterization of low-noise and high-reliability amorphous silicon gate driver circuit for advanced FPD applications,” Journal of Display Technology, Vol. 11, No. 8, pp. 633, 2015.
    [77] A. Indluru, S. M. Venugopal, D. R. Allee, and T. L. Alford, “Effect of anneal time on the enhanced performance of a-Si:H TFTs for future display technology,” Journal of Display Technology, Vol. 7, No. 6, pp. 306, 2011.
    [78] B. S. Bae, J. W. Choi, J. H. Oh, and J. Jang, “Level shifter embedded in drive circuits with amorphous silicon TFTs,” IEEE Trans. On Electron Devices, Vol. 53, No. 3, pp. 494, 2006.
    [79] S. M. GadelRab, and S. G. Chamberlain, “Improvement of the reliability of amorphous silicon transistors by conduction-band tail width reduction,” IEEE Trans. On Electron Devices, Vol. 45, No. 10, pp. 2179, 1998.
    [80] Y. Kuo, “Reactive ion etch damages in inverted, trilayer thin-film transistor,” Appl. Phys. Lett., Vo. 61, No. 23, pp. 2790, 1992.
    [81] Y. Ebiko, K. Suzuki, and N. Sasaki, “Improving the activation of the P+ region of low-temperature polycrystalline Si TFTs by using solid-phase crystallization,” IEEE Trans. On Electron Devices, Vol. 52, No. 3, pp. 429, 2005.
    [82] D. Geng, H. M. Kim, M. Mativenga, Y. F. Chen and J. Jang, “High resolution flexible AMOLED with integrated gate-driver using bulk-accumulation a-IGZO TFTs,” SID, Digest, p. 423, 2015.
    [83] S. Steudel, B. Cobb, M. Nag, K. Obata, M. Murata, K. Myny, S. Schols, P. Vicca, T. H. Ke, S. Smout, M. Willegems, M. Ameys, A. Bhoolokam, A. Kumar, J.-L. V. D. Steen, J. Genoe, G. Gelinck, and P. Heremans, “Flexible AMOLED display with integrated gate driver operating at operation speed compatible with 4k2k,” SID, Digest, p. 427, 2015.
    [84] J.-S. Yoo, S.-H. Jung, Y.-C. Kim, S.-C. Byun, J.-M. Kim, N.-B. Choi, S.-Y. Yoon, C.-D. Kim, Y.-K. Hwang, and I.-J. Chung, “Highly flexible AM-OLED display with integrated gate driver using amorphous silicon TFT on ultrathin metal foil,” Journal of Display Technology, Vol. 6, No. 11, pp. 565, 2010.
    [85] S. M. Venugopal, and D. R. Allee, “Integrated a-Si:H source drivers for 4" QVGA electrophoretic display on flexible stainless steel substrate,” Journal of Display Technology, Vol. 3, No. 1, pp. 57, 2007.
    [86] H. J. Moon, S. M. Lim, E.-J. Yun, and B. S. Bae, “Integrated a-Si:H source driver with improved output voltage for e-paper,” Journal of Display Technology, Vol. 8, No. 1, pp. 7, 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE