研究生: |
呂俊頡 Lu, Chun-Chieh |
---|---|
論文名稱: |
以化學氣相沈積法控制單層與雙層石墨於圖紋化矽基板之成長 Controlled Growth of Single-Layer and Double-Layer Graphene Sheets on Patterned Silicon Wafers |
指導教授: |
邱博文
Chiu, Po-Wen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 205 |
中文關鍵詞: | 單層石墨 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前製備單層石墨的方式最主要是利用機械剝離 (mechanical exfoliation) 的方式,但是這種方法不僅耗時,需要大量人力之外,也無法與半導體製程相容,因此本論文嘗試利用最常見的化學氣相沈積法 (Chemical vapor deposition, CVD),來發展出簡單快速的單層石墨成長技術,並且逐漸改善問題,使得這套成長技術不僅能夠與半導體製程相容,且可以穩定地控制成長大量的高品質單層或雙層石墨,進而延展到單層石墨元件的製備。另外,我們也藉由一系列拉曼光譜的統計,分析各種拉曼光譜的結果,進而瞭解石墨與基板間的交互作用情況,也瞭解石墨的成長機制,對於實現日後在生產線上的運作會更有幫助。
此外,由於機械剝離方式製備的單層石墨面積不大,在試片上定義其位置不易,不利於之後的製程。而本實驗所成長出的單層石墨不僅面積頗大,有利於微影技術,加上其顏色對比鮮明,利用光學影像即可非常容易地定義其位置,在實際製程上節省不少時間。只要將催化劑移除後,便可以快速製備單層石墨元件。而本實驗的特色就是在鎳薄膜上輕易定義出單層石墨的位置,之後的製程也可完全針對同一片單層石墨上,不用轉換到其他的試片,也就是說,此種製程比較能夠符合業界生產線上的作業,我們只需要將鎳薄膜移除即可完成元件的製備。
[1] J. Bardeen and W. H. Brattain, “The transistor, a semiconductor tridoe”,Phys. Rev., vol. 74, p. 230, 1948.
[2] M. I. Katsnelson, “Graphene: carbon in two dimensions”,Mater. Today, vol. 10, p. 20, 2007.
[3] P. J. F. Harris,Carbon Nanotubes and Related Structure, Cambridge University Press: New York.
[4] S. Iijima, “Helical microtubules of graphite carbon”, Nature, vol. 354, p. 56, 1991.
[5] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, vol. 363, p. 603, 1993.
[6] K.-T. Lau and D. Hu, “The revolutionary creation of new advanced materials carbon nanotube composites”, Composites : Part B, vol. 32, p. 263, 2002.
[7] T. Guo, P. Nikolaev, A. Thess, D. Colbert, and R. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization”, Chem. Phys. Lett., vol. 243, p. 49, 1995.
[8] L. F. Sun, J. M. Mao, Z. W. Pan, B. H. Chang, W.Y. Zhou, G. Wang, L. X. Qian and S.S. Xie, “Growth of straight nanotubes with a cobalt-nickel catalyst by chemical vapor deposition”, Appl. Phys. Lett., vol. 74, p. 644, 1999.
[9] A. P. Graham, G.S. Duesberg, R. V. Seidel, M. Liebau, E. Unger, W. Pamler, F. Kreupl and W. Hoenlein, “Carbon nanotubes for microelectronics”, Small, vol. 4, p. 382, 2005.
[10] R. Martel, T. Schmidt, H. R. Shea, T. Hertel and P. Avouris, “Single- and multi-wall carbon nanotube field effect transistor”, Appl. Phys. Lett., vol. 73, p. 2447, 1998.
[11] S. J. Tans, A. R. M. Verschueren and C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature, vol. 393, p. 49, 1998.
[12] R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. K. Chan, J. Tersoff and P. Avouris, “Ambipolar electrical transport in semiconducting single-wall carbon nanotubes”, Phys. Rev. Lett., vol. 87, p. 256805, 2001.
[13] R. M. V. D. S. J. Wind, J. Appenzeller and P. Avouris, “Vertical scaling of carbon nanotube feild effect transistors using top gate electrodes”, App. Phys. Lett., vol. 80, p. 3817-3819, 2002.
[14] Po-Wen Chiu and Chien-Hua Chen, “High-performance carbon nanotube network transistors for logic applications”, App. Phys. Lett., vol. 92, p. 063511, 2008.
[15] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, vol. 306, p. 666-669, 2004.
[16] A. Fasolino, J. H. Los and M. I. Katsnelson, “Intrinsic ripples in graphene”, Nature Mater., vol. 6, p. 858-861, 2007.
[17] J. H. Chen, C. Jang, S. X. M. I. and Fuhrer, M. S., “Intrinsic and extrinsic performance limits of graphene devices on SiO$_{2$”, Nature Nanotech., vol. 3, p. 206-209, 2008.
[18] J. Hass, W. A. de Heer and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene”, J. Phys.: Condens. Matter, vol. 20, p. 323202, 2008.
[19] D. D. L. Chung, “Review graphite”, Journal of Materials Science, vol. 37, p. 1475, 2002.
[20] S. Latil and L. Henrard, “Charge Carriers in Few-Layer Graphene Films”, Phys. Rev. Lett., vol. 97, p. 036803, 2006.
[21] R. Satio, G. Dresselhaus and M.S. Dresselhaus,Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998.
[22] B. Partoens and F. M. Peeters, “From graphene to graphite: Electronic structure around the k point”, Phys. Rev. B, vol. 74, p. 075404, 2006.
[23] J. Maultzsch, S. Reich, C. Thomsen, H. Requardt and P. Ordej\'{on, “Phonon Dispersion in Graphite”, Phys. Rev. Lett., vol. 92, p. 075501, 2004.
[24] P. Blakea, E. W. Hil, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth and A. K. Geim, “Making graphene visible”, Appl. Phys. Lett., vol. 91, p. 063124, 2007.
[25] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M.
Sprinkle, J. Hass, M. L. Sadowski, M. Potemski and G. Martinez, “Epitaxial
graphene”, Solid State Communications, vol. 143, p. 92-100, 2007.
[26] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J.
Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene”, Science, vol. 312, p. 1191-1196, 2006.
[27] X.Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang and H. Dai, “Highly conducting graphene sheets and Langmuir-Blodgett films”, Nature Nanotech., vol. 3, p. 538-542, 2008.
[28] G. Eda, G. Fanchini and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material”, Nature Nanotech., vol. 3, p. 270-274, 2008.
[29] S. Hagstrom, H. B. Lyon and G. A. Somorjai, “Surface Structures on the Clean Platinum (100) Surface”, Phys. Rev. Lett., vol. 15, p. 491-493, 1965.
[30] H. B. Lyon and G. A. Somorjai, “Low Energy Electron Diffraction Study of the Clean (100), (111), and (110) Faces of Platinum”, J. Chem. Phys., vol. 46, p. 2539, 1967.
[31] A. E. Morgan, G. A. Somorjai, “LEED Studies of Gas Adsorption on the Platinum(100) Single Crystal Surface”, Surf. Sci., vol. 12, p. 405, 1967.
[32] J. W. May, “Platinum surface LEED rings ”, Surf. Sci., vol. 17, p. 267, 1969.
[33] J. T. Grant and T. W. Haas, “A study of Ru (0001) and Rh (111) surfaces using LEED and Auger electron spectroscopy ”, Surf. Sci., vol. 21, p. 76, 1969.
[34] P. W. Sutter, J.-I. Flege and E. A. Sutter, “Epitaxial graphene on ruthenium”, Nature Mater., vol. 7, p. 406-411, 2008.
[35] A. N. Obraztsov, E. A. Obraztsov, A. V. Tyurnin and A. A. Zolotukhin, “Chemical vapor deposition of thin graphite films of nanometer thickness”, Carbon, vol. 45, p. 2017-2021, 2007.
[36] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S.-S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators” Appl. Phys. Lett., vol. 93, p. 113103, 2008.
[37] A. Reina, X. Jia, J Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition”, Nano Lett., vol. 9, p. 30-35, 2009.
[38] A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer and J. Kong, “Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces”, Nano Res., vol. 2, p. 509-516, 2009.
[39] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature, vol. 457, p. 706-710, 2009.
[40] S. J. Chae, F. G \H{unes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H.-J. Shin, S.-M. Yoon, J.-Y. Choi, M. H. Park, C. W. Yang, D. Pribat and Y. H. Lee, “Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation”, Adv. Mater., vol. 21, p. 1-6, 2009.
[41] X. Li, W.i Cai,. J. An, S.g Kim, J. Nah, D. Y, R. Piner, A. Velamakanni, I. Jung, E.l Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, Science, p. 1171245, 2009.
[42] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers”, Phy. Rev. Lett., vol. 97, p. 187401, 2006.
[43] J. C. Meyer, A. K. Geim, M. I. Katsnelsond, K. S. Novoselovc, D. Obergfelle, S. Rothe, C. Girita and A. Zettla, “On the roughness of single- and bi-layer graphene membranes”, Solid State Communications, vol. 143, p. 101-109, 2007.
[44] James D. Plummer, M. D. Deal and P. B. Griffin,Silicon VLSI Technology - Fundamentals, Practice and Modeling, Pearson Education International, 2000.
[45] J. R. Ferraro and K. Nakamoto,Introductory Raman Spectroscopy, Elsevier, 2003.
[46] N. B. Colthup, L. H. Daly and S. E. Wiberley,Introduction to Infrared and Raman Spectroscopy, Academic Press, 1990.
[47] M. S. Dresselhaus, G. Dresselhaus, R. Saito and A. Jorio, “Raman spectroscopy of carbon nanotubes”, Phys. Rep., vol. 409, p. 47-99, 2005.
[48] S. Reich and C. Thomsen, “Raman spectroscopy of graphite”, Phil. Trans. R. Soc. Lond. A, vol. 362, p. 2271–2288, 2004.
[49] L. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhaes-Paniago and M. A. Pimenta, “General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy”, Appl. Phys. Lett., vol. 88, p. 163106, 2006.
[50] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects”, Solid State Communications, vol. 143, p. 47-57, 2007.
[51] R. Saito, A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus and M. A. Pimenta, “Probing Phonon Dispersion Relations of Graphite by Double Resonance Raman Scattering”, Phys. Rev. Lett., vol. 88, p. 027401, 2002.
[52] J. Kurtiet, V. Zolyomi, A. Gruneis, and H. Kuzmany, “Double resonant Raman phenomena enhanced by van Hove singularities in single-wall carbon nanotubes”, Phys. Rev. B, vol. 65, p. 165433, 2002.
[53] C. Thomsen and S. Reich, “Double Resonant Raman Scattering in Graphite”, Phys. Rev. Lett., vol. 85, p. 5214, 2000.
[54] R. P. Vidano, D. B. Fishbach, L. J. Willis and T. M. Loehr, “Observation of Raman band shifting with excitation wavelength for carbons and graphites ”, Solid State Communications, vol. 39, p. 341-344 , 1981.
[55] S. Piscanec, M. Lazzeri, F. Mauri, A.C. Ferrari, J. Robertson, “Kohn Anomalies and Electron-Phonon Interactions in Graphite”, Phys. Rev. Lett., vol. 93, p. 185503, 2004.
[56] T. H. D. Fujita, “Surface precipitation of graphite layers on carbon-doped nickel and their stabilization effect against chemisorption and initial oxidation”, Surface and Interface Analysis, vol. 19, p. 430-434, 1992.
[57] D. Fujita and K. Yoshihara, “Surface precipitation process of epitaxially grown graphite (0001) layers on carbon-doped nickel (111) surface”, The 40th National Symposium of the American Vacuum Society, Orlando, Florida (USA), p. 2134-2139, 1994.
[58] Y. Gamo, A. Nagashima, M. Wakabayashi, M. Terai and C. Oshima, “Atomic structure of monolayer graphite formed on Ni (111)”, Surface Science, vol. 374, p. 61-64, 1997.
[59] G. Bertoni, L. Calmels, A. Altibelli, and V. Serin, “First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni (111) interface”, Phy. Rev. B, vol. 71, p. 075402, 2004.
[60] D. Laplazea, L. Alvareza, T. Guillardb, J. M. Badieb and G. Flamantb, “Carbon nanotubes: dynamics of synthesis processes”, Carbon, vol. 40, p. 1621-1634, 2002.
[61] H. Kanzow and A. Ding, “Formation mechanism of single-wall carbon nanotubes on liquid-metal particles”, Phys. Rev. B, vol. 60, p. 11180-11186, 1999.
[62] S. B. Sinnott, R. Andrews, D. Qian, A. M . Rao, Z. Mao, E. C. Dickey and F. Derbyshire, “Model of carbon nanotube growth through chemical vapor deposition”, Chem.l Phys. Lett., vol. 315, p. 25-30, 1999.
[63] A. N. Obraztsov, “Chenical vapor deposition : Making graphene on a large scale”, Nature Nanotech., vol. 4, p. 212-213, 2009.
[64] 潘扶民,“二次離子質譜術與超淺接面分析”,NDL 奈米通訊,第五卷第三期。
[65] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor”, Nature Nanotech., vol. 3, p. 210-215, 2008.
[66] Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng and Z. X. Shen, “Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening”, ACS Nano, vol. 2, p. 2301-2305, 2009.
[67] N. Ferralis, R. Maboudian and Carlo Carraro, “Evidence of Structural Strain in Epitaxial Graphene Layers on 6H-SiC(0001)”, Phys. Rev. Lett., vol. 101, p. 156801, 2008.
[68] T. G. Kollie, “Measurement of the thermal expansion coefficient of nickel from 300 to 1000K and determination of the power law constant near the Curie temperature”, Phys. Rev. B, vol. 16, p. 4872-4881, 1977.
[69] N. Mounet and N. Marzari, “First-principles determination of the structural, vibrational and thermodynamic
properties of diamond, graphite, and derivatives”, Phys. Rev. B, vol. 71, p. 205214, 2005.
[70] D. P. Riley, “The thermal expansion of graphite: Part 2. Theoretical”, p. 486-495.
[71] Z. H. Ni, T. Yu, Z. Q. Luo, Y. Y. Wang, L. Liu, C. P. Wong, J. Miao, W. Huang and Z. X. Shen, “Probing Charged Impurities in Suspended Graphene Using Raman Spectroscopy”, ACS Nano, vol. 3, p. 569-574, 2009.
[72] S. Berciaud, S. Ryu, L. E. Brus and T. F. Heinz, “Probing the Intrinsic Properties of Exfoliated Graphene Raman Spectroscopy of Free-Standing Monolayers”, Nano Lett., vol. 9, p. 346-352, 2009.
[73] A. N. Obraztsov, A. V. Tyurninaa, E. A. Obraztsova, A. A. Zolotukhin, B. Liu, K.-C. Chin, A. T. S. Wee, “Raman scattering characterization of CVD graphite films”, Carbon, vol. 46, p. 963-968, 2008.
[74] P. Poncharal, A. Ayari, T. Michel and J.-L. Sauvajol, “Raman spectra of misoriented bilayer graphene”, Phys. Rev. B, vol. 78, p. 113407, 2008.
[75] 黃宏勝, 林麗娟, “FE-SEM/CL/EBSD 分析技術簡介”, 工業材料雜誌 - 檢測技術在奈米科技之應用專題, 201期, p. 99-108, 2003.