簡易檢索 / 詳目顯示

研究生: 呂俊頡
Lu, Chun-Chieh
論文名稱: 以化學氣相沈積法控制單層與雙層石墨於圖紋化矽基板之成長
Controlled Growth of Single-Layer and Double-Layer Graphene Sheets on Patterned Silicon Wafers
指導教授: 邱博文
Chiu, Po-Wen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 205
中文關鍵詞: 單層石墨
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前製備單層石墨的方式最主要是利用機械剝離 (mechanical exfoliation) 的方式,但是這種方法不僅耗時,需要大量人力之外,也無法與半導體製程相容,因此本論文嘗試利用最常見的化學氣相沈積法 (Chemical vapor deposition, CVD),來發展出簡單快速的單層石墨成長技術,並且逐漸改善問題,使得這套成長技術不僅能夠與半導體製程相容,且可以穩定地控制成長大量的高品質單層或雙層石墨,進而延展到單層石墨元件的製備。另外,我們也藉由一系列拉曼光譜的統計,分析各種拉曼光譜的結果,進而瞭解石墨與基板間的交互作用情況,也瞭解石墨的成長機制,對於實現日後在生產線上的運作會更有幫助。

    此外,由於機械剝離方式製備的單層石墨面積不大,在試片上定義其位置不易,不利於之後的製程。而本實驗所成長出的單層石墨不僅面積頗大,有利於微影技術,加上其顏色對比鮮明,利用光學影像即可非常容易地定義其位置,在實際製程上節省不少時間。只要將催化劑移除後,便可以快速製備單層石墨元件。而本實驗的特色就是在鎳薄膜上輕易定義出單層石墨的位置,之後的製程也可完全針對同一片單層石墨上,不用轉換到其他的試片,也就是說,此種製程比較能夠符合業界生產線上的作業,我們只需要將鎳薄膜移除即可完成元件的製備。


    論文大綱 1 致謝 3 目錄 5 1 緒論 11 1.1 動機 11 1.1.1 以矽材料為主的半導體科技 11 1.1.2 目前半導體技術的發展侷限 14 1.2 奈米碳管 16 1.2.1 奈米碳管的合成方法 18 1.2.2 奈米碳管在電子元件上的應用 19 1.2.3 奈米碳管的發展侷限 23 1.3 論文結構 25 2. 單層石墨 27 2.1 石墨晶體結構 28 2.1.1 單層石墨 28 2.1.2 雙層與多層石墨 30 2.2 單層石墨的電子能帶 32 2.3 單層石墨的聲子能帶 33 2.4 單層石墨的製備方法 36 2.4.1 機械剝離 36 2.4.2 熱裂解磊晶成長於碳化矽上 36 2.4.3 氧化還原法 37 2.4.4 化學氣相沈積法 39 2.5 定單層石墨的工具 49 2.5.1 拉曼光譜 49 2.5.2 原子力顯微鏡 49 2.5.3 穿遂式電子顯微鏡 50 2.6 目前單層石墨的發展難題 50 3 化學氣相沈積 53 3.1 化學氣相沈積基本原理 53 3.1.1 薄膜成長 53 3.1.2 CVD反應機制 54 3.2 化學氣相沈積的分類 54 3.3 輸送現象討論 56 3.3.1 質傳控制以及表面反應控制 56 3.3.2 邊界層的改變以及表面消耗 59 3.3.3 低壓化學氣相沈積 62 3.4 建構實驗設備 63 4 拉曼光譜分析 69 4.1 拉曼效應 70 4.1.1 拉曼散射基本原理 70 4.1.2 拉曼散射的物理意義 73 4.1.3 共振拉曼散射 74 4.1.4 拉曼光譜之數學描述 75 4.2 拉曼光譜在石墨檢測上之應用 77 4.3 單層石墨之拉曼光譜 89 5 化學氣相沈積成長單層石墨 93 5.1 催化劑的製備 93 5.1.1 催化劑的選擇 93 5.1.2 拋光 95 5.1.3 蝕刻 96 5.2 塊材催化劑之實驗結果 97 5.2.1初步成長參數之測試 97 5.2.2成長溫度之測試 100 5.2.3反應氣體流量之測試 102 5.3薄膜催化劑之實驗結果 103 5.3.1 60 nm膜厚之測試 104 5.3.2 1µm膜厚之測試 104 5.3.3 拉曼光譜分析結果 104 5.4 快速生溫、快速降溫成長製程 106 5.5 在圖紋化之鎳薄膜上成長 112 5.5.1 碳源氣體流量 113 5.5.2 拉曼光譜統計分析 114 5.6 掃瞄式電子顯微鏡之影像 117 5.6.1 在鎳薄膜基板上之影像 117 5.6.2 在氧化矽基板上之影像 120 5.7 原子力顯微鏡之影像 123 6 單層石墨控制成長之機制探討 127 6.1 石墨成長機制概述 127 6.2 二次離子質譜儀 128 6.2.1 二次離子質譜術簡介 130 6.2.2 二次離子產生原理 131 6.2.3 表面效應 131 6.3 氫氣的使用 133 6.4 降溫速率之影響 135 6.4.1 緩慢降溫以及快速降溫 136 6.4.2 淬火降溫 136 6.5 控制成長之機制探討 141 6.6 表面氧化程度對析出成長之影響 144 7 CVD石墨之拉曼光譜統計分析 151 7.1 基板摻雜效應 151 7.2 應力與應變效應 155 7.3 HOPG與 CVD單層石墨之比較 159 7.3.1 G peak之峰值 159 7.3.2 2D peak之峰值 160 7.3.3 2D peak之強度 160 7.3.4 2D peak之對稱性 165 7.4 電子背向繞射系統 168 7.4.1電子背向繞射系統原理簡介 168 7.4.2 電子背向繞射系統裝置 169 7.4.3 結晶取向分析 171 7.5 鎳薄膜晶粒晶向對CVD單層石墨之影響 171 7.6 CVD雙層石墨之討論 175 7.6.1 Turbostratic stacking 176 7.6.2 Bernal stacking 178 7.7 總結 182 8 元件製程以及初步結果 185 8.1 移除催化劑 185 8.2 元件製程 189 9 結論與展望 193 9.1 實驗結果總結 193 9.2 未來展望 194 參考文獻 197

    [1] J. Bardeen and W. H. Brattain, “The transistor, a semiconductor tridoe”,Phys. Rev., vol. 74, p. 230, 1948.

    [2] M. I. Katsnelson, “Graphene: carbon in two dimensions”,Mater. Today, vol. 10, p. 20, 2007.

    [3] P. J. F. Harris,Carbon Nanotubes and Related Structure, Cambridge University Press: New York.

    [4] S. Iijima, “Helical microtubules of graphite carbon”, Nature, vol. 354, p. 56, 1991.

    [5] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, vol. 363, p. 603, 1993.

    [6] K.-T. Lau and D. Hu, “The revolutionary creation of new advanced materials carbon nanotube composites”, Composites : Part B, vol. 32, p. 263, 2002.

    [7] T. Guo, P. Nikolaev, A. Thess, D. Colbert, and R. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization”, Chem. Phys. Lett., vol. 243, p. 49, 1995.

    [8] L. F. Sun, J. M. Mao, Z. W. Pan, B. H. Chang, W.Y. Zhou, G. Wang, L. X. Qian and S.S. Xie, “Growth of straight nanotubes with a cobalt-nickel catalyst by chemical vapor deposition”, Appl. Phys. Lett., vol. 74, p. 644, 1999.

    [9] A. P. Graham, G.S. Duesberg, R. V. Seidel, M. Liebau, E. Unger, W. Pamler, F. Kreupl and W. Hoenlein, “Carbon nanotubes for microelectronics”, Small, vol. 4, p. 382, 2005.

    [10] R. Martel, T. Schmidt, H. R. Shea, T. Hertel and P. Avouris, “Single- and multi-wall carbon nanotube field effect transistor”, Appl. Phys. Lett., vol. 73, p. 2447, 1998.

    [11] S. J. Tans, A. R. M. Verschueren and C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature, vol. 393, p. 49, 1998.

    [12] R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. K. Chan, J. Tersoff and P. Avouris, “Ambipolar electrical transport in semiconducting single-wall carbon nanotubes”, Phys. Rev. Lett., vol. 87, p. 256805, 2001.

    [13] R. M. V. D. S. J. Wind, J. Appenzeller and P. Avouris, “Vertical scaling of carbon nanotube feild effect transistors using top gate electrodes”, App. Phys. Lett., vol. 80, p. 3817-3819, 2002.

    [14] Po-Wen Chiu and Chien-Hua Chen, “High-performance carbon nanotube network transistors for logic applications”, App. Phys. Lett., vol. 92, p. 063511, 2008.

    [15] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, vol. 306, p. 666-669, 2004.

    [16] A. Fasolino, J. H. Los and M. I. Katsnelson, “Intrinsic ripples in graphene”, Nature Mater., vol. 6, p. 858-861, 2007.

    [17] J. H. Chen, C. Jang, S. X. M. I. and Fuhrer, M. S., “Intrinsic and extrinsic performance limits of graphene devices on SiO$_{2$”, Nature Nanotech., vol. 3, p. 206-209, 2008.

    [18] J. Hass, W. A. de Heer and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene”, J. Phys.: Condens. Matter, vol. 20, p. 323202, 2008.

    [19] D. D. L. Chung, “Review graphite”, Journal of Materials Science, vol. 37, p. 1475, 2002.

    [20] S. Latil and L. Henrard, “Charge Carriers in Few-Layer Graphene Films”, Phys. Rev. Lett., vol. 97, p. 036803, 2006.

    [21] R. Satio, G. Dresselhaus and M.S. Dresselhaus,Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998.

    [22] B. Partoens and F. M. Peeters, “From graphene to graphite: Electronic structure around the k point”, Phys. Rev. B, vol. 74, p. 075404, 2006.

    [23] J. Maultzsch, S. Reich, C. Thomsen, H. Requardt and P. Ordej\'{on, “Phonon Dispersion in Graphite”, Phys. Rev. Lett., vol. 92, p. 075501, 2004.

    [24] P. Blakea, E. W. Hil, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth and A. K. Geim, “Making graphene visible”, Appl. Phys. Lett., vol. 91, p. 063124, 2007.

    [25] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M.
    Sprinkle, J. Hass, M. L. Sadowski, M. Potemski and G. Martinez, “Epitaxial
    graphene”, Solid State Communications, vol. 143, p. 92-100, 2007.

    [26] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J.
    Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene”, Science, vol. 312, p. 1191-1196, 2006.

    [27] X.Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang and H. Dai, “Highly conducting graphene sheets and Langmuir-Blodgett films”, Nature Nanotech., vol. 3, p. 538-542, 2008.

    [28] G. Eda, G. Fanchini and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material”, Nature Nanotech., vol. 3, p. 270-274, 2008.

    [29] S. Hagstrom, H. B. Lyon and G. A. Somorjai, “Surface Structures on the Clean Platinum (100) Surface”, Phys. Rev. Lett., vol. 15, p. 491-493, 1965.

    [30] H. B. Lyon and G. A. Somorjai, “Low Energy Electron Diffraction Study of the Clean (100), (111), and (110) Faces of Platinum”, J. Chem. Phys., vol. 46, p. 2539, 1967.

    [31] A. E. Morgan, G. A. Somorjai, “LEED Studies of Gas Adsorption on the Platinum(100) Single Crystal Surface”, Surf. Sci., vol. 12, p. 405, 1967.

    [32] J. W. May, “Platinum surface LEED rings ”, Surf. Sci., vol. 17, p. 267, 1969.

    [33] J. T. Grant and T. W. Haas, “A study of Ru (0001) and Rh (111) surfaces using LEED and Auger electron spectroscopy ”, Surf. Sci., vol. 21, p. 76, 1969.

    [34] P. W. Sutter, J.-I. Flege and E. A. Sutter, “Epitaxial graphene on ruthenium”, Nature Mater., vol. 7, p. 406-411, 2008.

    [35] A. N. Obraztsov, E. A. Obraztsov, A. V. Tyurnin and A. A. Zolotukhin, “Chemical vapor deposition of thin graphite films of nanometer thickness”, Carbon, vol. 45, p. 2017-2021, 2007.

    [36] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S.-S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators” Appl. Phys. Lett., vol. 93, p. 113103, 2008.

    [37] A. Reina, X. Jia, J Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition”, Nano Lett., vol. 9, p. 30-35, 2009.

    [38] A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer and J. Kong, “Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces”, Nano Res., vol. 2, p. 509-516, 2009.

    [39] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature, vol. 457, p. 706-710, 2009.

    [40] S. J. Chae, F. G \H{unes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H.-J. Shin, S.-M. Yoon, J.-Y. Choi, M. H. Park, C. W. Yang, D. Pribat and Y. H. Lee, “Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation”, Adv. Mater., vol. 21, p. 1-6, 2009.

    [41] X. Li, W.i Cai,. J. An, S.g Kim, J. Nah, D. Y, R. Piner, A. Velamakanni, I. Jung, E.l Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, Science, p. 1171245, 2009.

    [42] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers”, Phy. Rev. Lett., vol. 97, p. 187401, 2006.

    [43] J. C. Meyer, A. K. Geim, M. I. Katsnelsond, K. S. Novoselovc, D. Obergfelle, S. Rothe, C. Girita and A. Zettla, “On the roughness of single- and bi-layer graphene membranes”, Solid State Communications, vol. 143, p. 101-109, 2007.

    [44] James D. Plummer, M. D. Deal and P. B. Griffin,Silicon VLSI Technology - Fundamentals, Practice and Modeling, Pearson Education International, 2000.

    [45] J. R. Ferraro and K. Nakamoto,Introductory Raman Spectroscopy, Elsevier, 2003.

    [46] N. B. Colthup, L. H. Daly and S. E. Wiberley,Introduction to Infrared and Raman Spectroscopy, Academic Press, 1990.

    [47] M. S. Dresselhaus, G. Dresselhaus, R. Saito and A. Jorio, “Raman spectroscopy of carbon nanotubes”, Phys. Rep., vol. 409, p. 47-99, 2005.

    [48] S. Reich and C. Thomsen, “Raman spectroscopy of graphite”, Phil. Trans. R. Soc. Lond. A, vol. 362, p. 2271–2288, 2004.

    [49] L. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhaes-Paniago and M. A. Pimenta, “General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy”, Appl. Phys. Lett., vol. 88, p. 163106, 2006.

    [50] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects”, Solid State Communications, vol. 143, p. 47-57, 2007.

    [51] R. Saito, A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus and M. A. Pimenta, “Probing Phonon Dispersion Relations of Graphite by Double Resonance Raman Scattering”, Phys. Rev. Lett., vol. 88, p. 027401, 2002.

    [52] J. Kurtiet, V. Zolyomi, A. Gruneis, and H. Kuzmany, “Double resonant Raman phenomena enhanced by van Hove singularities in single-wall carbon nanotubes”, Phys. Rev. B, vol. 65, p. 165433, 2002.

    [53] C. Thomsen and S. Reich, “Double Resonant Raman Scattering in Graphite”, Phys. Rev. Lett., vol. 85, p. 5214, 2000.

    [54] R. P. Vidano, D. B. Fishbach, L. J. Willis and T. M. Loehr, “Observation of Raman band shifting with excitation wavelength for carbons and graphites ”, Solid State Communications, vol. 39, p. 341-344 , 1981.

    [55] S. Piscanec, M. Lazzeri, F. Mauri, A.C. Ferrari, J. Robertson, “Kohn Anomalies and Electron-Phonon Interactions in Graphite”, Phys. Rev. Lett., vol. 93, p. 185503, 2004.

    [56] T. H. D. Fujita, “Surface precipitation of graphite layers on carbon-doped nickel and their stabilization effect against chemisorption and initial oxidation”, Surface and Interface Analysis, vol. 19, p. 430-434, 1992.

    [57] D. Fujita and K. Yoshihara, “Surface precipitation process of epitaxially grown graphite (0001) layers on carbon-doped nickel (111) surface”, The 40th National Symposium of the American Vacuum Society, Orlando, Florida (USA), p. 2134-2139, 1994.

    [58] Y. Gamo, A. Nagashima, M. Wakabayashi, M. Terai and C. Oshima, “Atomic structure of monolayer graphite formed on Ni (111)”, Surface Science, vol. 374, p. 61-64, 1997.

    [59] G. Bertoni, L. Calmels, A. Altibelli, and V. Serin, “First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni (111) interface”, Phy. Rev. B, vol. 71, p. 075402, 2004.

    [60] D. Laplazea, L. Alvareza, T. Guillardb, J. M. Badieb and G. Flamantb, “Carbon nanotubes: dynamics of synthesis processes”, Carbon, vol. 40, p. 1621-1634, 2002.

    [61] H. Kanzow and A. Ding, “Formation mechanism of single-wall carbon nanotubes on liquid-metal particles”, Phys. Rev. B, vol. 60, p. 11180-11186, 1999.

    [62] S. B. Sinnott, R. Andrews, D. Qian, A. M . Rao, Z. Mao, E. C. Dickey and F. Derbyshire, “Model of carbon nanotube growth through chemical vapor deposition”, Chem.l Phys. Lett., vol. 315, p. 25-30, 1999.

    [63] A. N. Obraztsov, “Chenical vapor deposition : Making graphene on a large scale”, Nature Nanotech., vol. 4, p. 212-213, 2009.

    [64] 潘扶民,“二次離子質譜術與超淺接面分析”,NDL 奈米通訊,第五卷第三期。

    [65] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor”, Nature Nanotech., vol. 3, p. 210-215, 2008.

    [66] Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng and Z. X. Shen, “Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening”, ACS Nano, vol. 2, p. 2301-2305, 2009.

    [67] N. Ferralis, R. Maboudian and Carlo Carraro, “Evidence of Structural Strain in Epitaxial Graphene Layers on 6H-SiC(0001)”, Phys. Rev. Lett., vol. 101, p. 156801, 2008.

    [68] T. G. Kollie, “Measurement of the thermal expansion coefficient of nickel from 300 to 1000K and determination of the power law constant near the Curie temperature”, Phys. Rev. B, vol. 16, p. 4872-4881, 1977.

    [69] N. Mounet and N. Marzari, “First-principles determination of the structural, vibrational and thermodynamic
    properties of diamond, graphite, and derivatives”, Phys. Rev. B, vol. 71, p. 205214, 2005.

    [70] D. P. Riley, “The thermal expansion of graphite: Part 2. Theoretical”, p. 486-495.

    [71] Z. H. Ni, T. Yu, Z. Q. Luo, Y. Y. Wang, L. Liu, C. P. Wong, J. Miao, W. Huang and Z. X. Shen, “Probing Charged Impurities in Suspended Graphene Using Raman Spectroscopy”, ACS Nano, vol. 3, p. 569-574, 2009.

    [72] S. Berciaud, S. Ryu, L. E. Brus and T. F. Heinz, “Probing the Intrinsic Properties of Exfoliated Graphene Raman Spectroscopy of Free-Standing Monolayers”, Nano Lett., vol. 9, p. 346-352, 2009.

    [73] A. N. Obraztsov, A. V. Tyurninaa, E. A. Obraztsova, A. A. Zolotukhin, B. Liu, K.-C. Chin, A. T. S. Wee, “Raman scattering characterization of CVD graphite films”, Carbon, vol. 46, p. 963-968, 2008.

    [74] P. Poncharal, A. Ayari, T. Michel and J.-L. Sauvajol, “Raman spectra of misoriented bilayer graphene”, Phys. Rev. B, vol. 78, p. 113407, 2008.

    [75] 黃宏勝, 林麗娟, “FE-SEM/CL/EBSD 分析技術簡介”, 工業材料雜誌 - 檢測技術在奈米科技之應用專題, 201期, p. 99-108, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE