研究生: |
陳書偉 |
---|---|
論文名稱: |
非二位元類循環低密度奇偶檢查碼的錯誤平層降低技術 An Error-Floor Lowering technique for Non-binary QC-LDPC Codes |
指導教授: | 翁詠祿 |
口試委員: |
王忠炫
楊家驤 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 低密度奇偶檢查碼 、降低錯誤平層 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
低密度奇偶檢查碼(LDPC codes)的錯誤平層(Error-floors)是重大的障礙當應用在許多需要極低錯誤率的通訊系統和儲存設備。它被歸咎於低密度奇偶檢查碼的Tanner圖有特殊的結構,那經常會困住訊息傳遞解碼演算法(message-passing decoding lgorithm),而且阻止解碼的結果收斂到傳輸的碼字(codewoed)。我們提出一個技術可以降低二位元低密度奇偶檢查碼和非二位元低密度奇偶檢查碼(Non-binary LDPC)的錯誤平層。根據解碼失敗的結果,一些不可靠的變數節點(variable-nodes)可以在前一次疊代中被指認出來。提出的技術是強制給一個極端值到一個不可靠的變數節點然後重新執行解碼的程序。依據可靠度強制給值(reliability-based forcing)的技術可以使解碼器避免錯誤的事件,而且只伴隨適當的複雜度。我們也實作這個技術在硬體模擬平台在上面。此外,(3, 12)-regular 32-ary (372, 286) 和(3, 12)-regular 16-ary (180, 141) 非二位元類循環低密度奇偶檢查碼(QC-LDPC codes)被展示在可加性高斯白雜訊(AWGN)通道環境中藉由被設計出的多重場(multi-eld (Galois eld))解碼器使用FPGA(field-programmable gate array)平台。這個平台確實加速了非二位元低密度奇偶檢查碼的模擬。模擬的結果顯示提出來的技術有效地降低了錯誤平層好幾
個層級。
[1] R. G. Gallager, \Low-density parity-check codes," IRE Trans. Inf. Theory, vol. IT-8, pp. 21-28, Jan. 1962.
[2] D. J. C. MacKay, \Good error-correcting codes based on very sparse matrices," IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399-431, Mar.
1999.
[3] M. C. Davey and D. J. C. Mackay, \Low-density parity check codes over GF(q)," IEEE Commun. Lett., vol. 2, no. 6, pp. 165-167, Jun. 1998.
[4] C. Spagnol and W. Marnane, \A class of quasi-cyclic LDPC codes over GF(2m)," IEEE Trans. Commun., vol. 57, no. 9, pp. 2524-2527, Sep.
2009.
[5] D. MacKay and M. Postol, \Weaknesses of margulis and ramanujan-margulis low-density parity-check codes," Electronic Notes Theoretical
Computer Science, vlo. 74, 2003.
[6] T. Richardson, \Error floors of LDPC codes," in Proc. 41st Allerton
Conf. Commun., Control, Computing, Allerton House, Monticello, IL,
USA, Oct. 2003.
[7] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, \Construction of irregular LDPC codes with low error
oors," Proc. IEEE International
Conf. Commun., vol. 5, pp. 3125-3129, May 2003.
[8] W.-Y. Weng, A. Ramamoorthy, and R. D. Wesel, \Lowering the error floors of irregular high-rate LDPC codes by graph condition," Proc. 60th
Veh. Technol. Conf., vol. 4, pp. 2549-2553, Sept. 2004.
[9] D. Divsalar and C. Jones, \Protograph based low error
oor LDPC coded modulation," Proc. IEEE Military Commun. Conf., vol. 1, pp.
378-385, Oct. 2005.
[10] Y. Zhang and W. E. Ryan, \Toward low LDPC-code
oors: a case study," IEEE Trans. Commun., Jun. 2009.
submitted to IEEE Trans. Commun.,
[11] J. Lu and J. M. F. Moura, \Structured LDPC codes for high-density recording: large girth and low error floor," IEEE Trans. Magnetics, vol.
42, pp. 208-213, Feb. 2006.
[12] H. Pishro-Nik and F. Fekri, \On decoding of low-density parity-check codes over the binary erasure channel," IEEE Trans. Inf. Theory, vol. 50, no. 3, pp. 439-454, Mar. 2004.
[13] B. N. Vellambi and F. Fekri, \Results on the improved decoding algorithm for low-density parity-check codes over the binary erasure channel," IEEE Trans. Inf. Theory, vol. 53, no. 4, pp. 1510-1520, Apr.2007.
[14] H. Pishro-Nik and F. Fekri, \Results on punctured low-density parity-check codes and improved iterative decoding techniques," IEEE Trans.
Inf. Theory, vol.53, no. 2, pp. 599-614, Feb. 2007.
[15] E. Cavus and B. Daneshrad, \A performance improvement and er-
ror
oor avoidance technique for belief propagation decoding of LDPC
codes," in Proc. 16th IEEE International Symp. Personal, Indoor Mobile
Radio Commun, vol.4, pp. 2386-2390, Sept. 2005.
[16] A. I. Vila Casado, M. Griot, and R. Wesel, \Informed dynamic scheduling for belief-propagation decoding of LDPC codes," in Proc. IEEE
ICC'07, Glasgow, Scotland, June 2007.
[17] Z. Zhang, L. Dolecek, B. Nikolic,V. Anantharam, and M.J.Wainwright,
\Lowering LDPC error floors by postprocessing," in Proc. IEEE Global
Communications Conf., NewOrleans, LA, pp. 1{6, Nov. 2008.
[18] Y. Han and W. E. Ryan, \Low-floor decoder for LDPC codes," IEEE
Trans. Commun., vol. 57, no. 6, pp. 1663-1673, June 2009.
[19] R. McEliece, \On the BCJR trellis for linear block codes," IEEE Trans. Inf. Theory, pp. 1072-1092, July 1996.
[20] J. Kang, Q. Huang, S. Lin, and K. Abdel-Ghaar, \An iterative decoding algorithm with backtracking to lower the error-floors of LDPC
codes," IEEE Trans. Commun., vol. 59, no. 1, Jan 2011.
[21] B. Zhou, L. Zhang, J. Kang, Q. Huang, S. Lin, and K. Abdel-Ghaar,
\Array dispersions of matrices and constructions of quasi-cyclic LDPC codes over non-binary elds," in Proc. IEEE Int. Symp. Inform. Theory,
Toronto, Ontario, Canada, pp. 1158-1162, July 2008.
[22] V. Savin, \Min-Max decoding for non binary LDPC codes," in Proc.
IEEE ISIT2008, Toronto, Canada, Jul. 6-11, 2008, pp. 960-964.
[23] Y. Ueng, C. Leong, C. Yang, C. Cheng, K. Liao, and S. Chen, \An efficient layered decoding architecture for non-binary QC-LDPC codes,"
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 2, pp. 385{398,
Feb. 2012.
[24] R.C. Tausworthe, \Random Numbers Generated by Linear Recurrence Modulo Two," Math. and Computation, vol. 19, pp. 201{209, 1965.
[25] P. L'Ecuyer, \Maximally Equidistributed Combined Tausworthe Generators," Math. Computation, vol. 65, no. 213, pp. 203{213, 1996.
[26] D. Lee, J. Villasenor, W. Luk, and P. Leong, \A hardware Gaussian noise generator using the Box-Muller method and its error analysis,"
IEEE Trans. Computers, vol. 55, no. 6, pp. 659{671, Jun 2006.