簡易檢索 / 詳目顯示

研究生: 陳升亭
Chen, Sheng Ting
論文名稱: 偏壓以及電源調變之CMOS 100億赫茲E型功率放大器
Bias and Supply Modulated CMOS 10 GHz Class-E Power Amplifier
指導教授: 劉怡君
Jenny Yi-Chun Liu
口試委員: 徐碩鴻
Shawn S. H. Hsu
黃柏鈞
Huang, Po-Chiun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 75
中文關鍵詞: 功率放大器E型放大器低降壓穩壓器極化控制
外文關鍵詞: LDO, EER, PA, class-E
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,極化控制發送機(polar modulation transmitter)是個很熱門的研究題目,這種方式是將RF訊號分為相位以及振幅訊號,相位訊號將會送入功率放大器,而振幅訊號將會送入一個控制電路根據功率放大器的需求來提供電源。此系統可以使用非線性放大器例如E型放大器,相對於傳統的做法,這種架構可以同時確保系統的線性度以及功率增進效益。
      最近的研究大部分著重於2.4GHz的頻段,本文將提出一個新的極化控制架構工作於10GHz,此架構使用一個多輸出直流對直流轉換器提供多個穩壓的電壓源予以功率放大器使用,另使用一個ADC來感測封包訊號來決定放大器所使用的電壓大小。此方法可以增加在不同的功率下放大器的功率增進效益。本文以CMOS 90奈米的技術設計了一個工作於10GHz的E型功率放大器以及一個多輸出直流對直流轉換器。
      E型功率放大器使用1.5V的電壓源達到11.7dBm的輸出功率、10.32dBm輸出增益壓縮點以及40.36%的功率增進效益。
      多輸出直流對直流轉換器是一個使用1.5V電壓源的多輸出低降壓穩壓器,此穩壓器可提供三個特定的電壓,分別從0.7V至0.85V,此穩壓器將用來提供E型功率放大器的電壓源以增進其效益。


    Nowadays, polar modulation transmitter is a popular research topic. In this architecture, a RF signal is separated into two parts: its amplitude and phase. The phase component is fed into a power amplifier, and the amplitude component is fed into a control circuit that modulates the supply voltage of the power amplifier accordingly. Thus in a polar modulation system, it is allowed to use a highly non-linear power amplifier such as a class-E amplifier. Compared to ordinary power amplification, this architecture favors both high linearity and power-added-efficiency. However, the recent researches on such architecture are mostly centered around 2.4 GHz.
    In this thesis, a new polar modulation system at 10 GHz is proposed. It uses a multiple-output DC-DC converter to provide several different regulated voltages to the power amplifier. An ADC is needed to sense the envelope of the signal in order to select the voltage that is applied to the power amplifier accordingly. This technique improves the efficiency of the power amplifier in different power levels. In this thesis, a 10 GHz class-E power amplifier prototype and a multiple-output DC-DC converter are demonstrated in CMOS 90-nm technology.
    The implemented class-E power amplifier reaches an output power of 11.7 dBm, an output 1-dB compression point of 10.32 dBm, and a power-added-efficiency of 40.36% with a supply voltage of 1.5 V.
    The multiple-output DC-DC converter is a multiple outputs low dropout regulator that provides three distinct outputs from 0.7 V to 0.85 V. These voltages are used to change the supply voltage of the class-E power amplifier for efficiency enhancement.

    摘要 2 ABSTRACT 3 CONTENTS 4 LIST OF FIGURES 6 LIST OF TABLE 10 CHAPTER 1 INTRODUCTION 11 1.1 Motivation 11 1.2 Thesis Organization 12 CHAPTER 2 INTRODUCTION OF ENVELOPE ELIMINATION AND RESTORATION SYSTEM 13 2.1 Introduction 13 2.2 Literature review 15 2.2.1 A Highly-Efficient RF Polar Transmitter Using SiGe Power Amplifier and CMOS Envelope-Tracking Amplifier for Mobile WiMAX 15 2.2.2 “A Two-Phase Switching Hybrid Supply Modulator for RF Power Amplifiers With 9% Efficiency Improvement” 17 2.2.3 “A Wideband Supply Modulator for 20 MHz RF Bandwidth Polar PAs in 65 nm CMOS” 19 2.2.4 “Class-G Supply Modulator and Class-E PA in 130-nm CMOS” 21 2.3 The new polar modulation system 23 CHAPTER 3 DESIGN A 10 GHZ HIGH POWER ADDED EFFICIENCY CLASS-E PA IN 90NM CMOS 24 3.1 Introduction 24 3.2 Literature Review 25 3.3 Design the High Power-Added-Efficiency Power Amplifier 26 3.3.1 Choosing the Transistor Size 27 3.3.2 Inductor design 28 3.4 Proposed Circuitry 30 3.5 Simulation and Measurement Results 31 3.6 Enhance the power-added-efficiency 37 CHAPTER 4 DESIGN A MULTIPLE OUTPUTS LOW-DROPOUT REGULATOR IN 90-NM CMOS 50 4.1 Introduction 50 4.2 Literature Review 51 4.3 Using LDO to Provide Supply Power for Power amplifier 52 4.4 Design the Multiple Outputs Low-Dropout Regulator 55 4.4.1 Design the current source 56 4.4.2 Design the error amplifier 57 4.3.3 Design the MOLDO 58 4.5 Simulation Results 61 4.5 Measurement Results 68 CHAPTER 5 FUTURE WORKS AND CONCLUSIONS 72

    [1] Yan Li; Po-Hsing Wu; Lopez, J.; Ruili Wu; Lie, D.Y.C.; Chen, K.; Wu, S.; Tzu-Yi Yang, "A highly-efficient RF polar transmitter using SiGe power amplifier and CMOS envelope-tracking amplifier for mobile WiMAX," International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2011, pages: 1-4.
    [2] Wu, P.Y.; Mok, P.K.T. “A Two-Phase Switching Hybrid Supply Modulator for RF Power Amplifiers With 9% Efficiency Improvement” IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2010, pages: 2543 – 2556.
    [3] Rameswor Shrestha, Ronan van der Zee, Member, IEEE, Anton de Graauw, and Bram Nauta, “A Wideband Supply Modulator for 20 MHz RF Bandwidth Polar PAs in 65 nm CMOS” IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2009, pages: 1272-1280.
    [4] Walling, J.S.; Taylor, S.S.; Allstot, D.J., “A Class-G Supply Modulator and Class-E PA in 130 nm CMOS” IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2009, pages: 2339 – 2347.
    [5] F. H. Raab, “Idealized operation of the class E tuned power amplifier,” IEEE Trans. Circuits Syst. 1977, pages: 725–735.
    [6] Sunghyuk Lee; Chandrakasan, A.P.; Hae-Seung Lee “A 1 GS/s 10b 18.9 mW Time-Interleaved SAR ADC With Background Timing Skew Calibration” IEEE Journal of Solid-State Circuits, 2014, pages: 2846 – 2856.
    [7] Ying-Zu Lin; Chun-Cheng Liu; Guan-Ying Huang; Ya-Ting Shyu; Yen-Ting Liu; Soon-Jyh Chang “A 9-Bit 150-MS/s Subrange ADC Based on SAR Architecture in 90-nm CMOS” Circuits and Systems I, IEEE, 2013, pages: 570 – 581.

    [8] Bon-Hyun Ku ; Sang-Hyun Baek ; Songcheol Hong “A X-band CMOS power amplifier with on-chip transmission line transformers” Radio Frequency Integrated Circuits Symposium, 2008, pages: 523 – 526.
    [9] Ping-Sung Chi ; Zuo-Min Tsai ; Jing-Lin Kuo ; Kun-You Lin ; Huei Wang “An X-band, 23.8-dBm fully integrated power amplifier with 25.8% PAE in 0.18-µm CMOS technology” Microwave Conference (EuMC), 2010 European, pages: 1678 – 1681.
    [10] Young Yun Woo ; Youngoo Yang ; Kim, Bumman “Analysis and experiments for high-efficiency class-F and inverse class-F power amplifiers” IEEE Transactions on Microwave Theory and Techniques, 2006, pages: 1969 – 1974.
    [11] Dawn, D. “Millimeter-wave CMOS switching power amplifiers” IEEE MTT-S International Microwave and RF Conference, 2013 pages: 1 – 4.
    [12] Jing-Hwa Chen ; Helmi, S.R. ; Jou, A.Y.-S.; Mohammadi, S. “A Wideband Power Amplifier in 45 nm CMOS SOI Technology for X Band Applications” IEEE Microwave and Wireless Components Letters, 2013, pages: 587 – 589.
    [13] SauSiong Chong ; Pak Kwong Chan “A 0.9-/spl mu/A Quiescent Current Output-Capacitorless LDO Regulator With Adaptive Power Transistors in 65-nm CMOS” IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, pages: 1072 – 1081.
    [14] M. Al-Shyoukh, H. Lee, and R. Perez, “A transient-enhanced low quiescentcurrent low-dropout regulator with buffer impedance attenuation,” IEEE Journal of Solid-State Circuits, 2007, pages: 1732–1742.
    [15] M. H. Huang, Y. N. Tsai, Y. H. Lee, S. J. Wang, K. H. Chen, Y. H. Lin, and G. K. Ma, “Sub-1 V input single-inductor dual-output (SIDO) DC-DC converter with adaptive load-tracking control (ALTC) for single-cell-powered system” IEEE Transactions on Power Electronics, 2010, pages: 268–271.
    [16] Shiquan Fan ; Zhongming Xue ; Hao Lu ; Yan Song ; Haiqi Li ; Li Geng “Area-Efficient On-Chip DC–DC Converter With Multiple-Output for Bio-Medical Applications” IEEE Transactions on Circuits and Systems I, 2014, pages: 3298 – 3308.
    [17] R. Jacob Baker “CMOS Circuit Design, Layout, and Simulation” IEEE Press Series on Microelectronic Systems, 2010, pages: 624-629.
    [18] Anandaroop Chakrabarti, Harish Krishnaswamy “High-Power High-Efficiency Class-E-LikeStacked mmWave PAs in SOI and Bulk CMOS: Theory and Implementation” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2014, pages: 1786-1704.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE