研究生: |
劉泰宏 Liu, Tai-Hung. |
---|---|
論文名稱: |
碳纖維/環氧樹脂複合材料壓力容器之有限單元分析 Stress Analysis of Graphite/Epoxy Composite Pressure Vessel by Finite Element Method |
指導教授: |
葉孟考
Yeh, Meng Kao |
口試委員: |
蔣長榮
Chiang, Chun-Ron 張禎元 Chang, Jen-Yuan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 125 |
中文關鍵詞: | 有限單元法 、碳纖維/環氧樹脂 、蔡希爾失效準則 、田口法 、壓力容器 |
外文關鍵詞: | FEM, Graphite/Epoxy, Tsai-Hill, Taguchi, Vessel |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以有限單元軟體ANSYS,模擬分析碳纖維/環氧樹脂(Graphite/Epoxy)複合材料壓力容器。本研究探討碳纖維/環氧樹脂壓力容器在壓縮天然氣(Compressed Natural Gas, CNG)使用規範之操作壓力下,搭配田口法(Taguchi Method)直交表分析及設計9組壓力容器模型,以四種因子及各三種水準,因子包括殼體厚度與壓力容器半徑比、端板開口半徑與壓力容器半徑比、碳纖維/環氧樹脂之疊層排列,及筒體長度與壓力容器半徑比。
為探討9組壓力容器模型結構位移、應力分佈影響程度,並比較壓力容器最大位移、端板及筒體交界處之蔡希爾失效值,使用田口望小型方法分析其蔡希爾失效值之田口信噪比(S/N Ratio),討論控制因子對壓力容器結構之程度。當壓力容器厚度越厚,或疊層排列為交叉疊層[(0/90)S]n,或筒體越短或為球型結構時,抑制壓力容器之位移效果最佳;當壓力容器之筒體及端板交界處或兩端板交界處為環狀拘束時,類均向(Quasi-Isotropic)疊層[(0/60/-60)S]n為最佳水準;若其為自由膨脹邊界時,球型結構為最佳水準,而疊層排列之影響較不明顯。
對具有筒體結構之壓力容器可以高模數高密度聚乙烯包覆減緩內層纖維角0度應力及蔡希爾失效值,討論以整體及局部包覆筒體中心部分;在端板與交界處為環狀拘束時,局部高模數高密度聚乙烯包覆可明顯抑制筒體應力,而以整體包覆筒體部分有失效風險。
此外,對9種壓力容器模型模態分析,以田口望大型方法分析其第一模態頻率之田口S/N比,比較造成低頻影響之程度控制因子。當筒體越短或球型結構時較利於高頻設計,疊層排列為交叉疊層時較不利於高頻設計。
The stress analysis of graphite/epoxy composite pressure vessel was carried out using finite element software ANSYS. The Taguchi method was used to investigate the deformation and failure of the graphite/epoxy composite pressure vessel. Four factors, including thickness-vessel radius ratio, end plate opening radius-vessel radius ratio, lamination stacking and cylinder length-vessel radius ratio, with three levels by orthogonal array of Taguchi method to make total nine analysis models are studied in this study.
The Tsai-Hill failure criterion value at the junction of semispherical part was considered as the S/N ratio for the smaller better value of Taguchi method. For thicker pressure vessel, the stacking [(0/90)S]n, or shorter cylindrical part, the deformation of composite pressure vessel is smaller. When the two junctions of semispherical parts are clamped, the vessel with quasi-isotropic [(0/60/-60)S]n lamination has the smallest deformation; while under free boundary condition, the smallest deformation occurs for the spherical pressure vessel and the effect of lamination stacking is not obvious.
The pressure vessel covered by a high density polyethylene layer with total or a central half lengths can reduce the stress in the composite pressure vessel. The Tsai-Hill failure criterion for the 0 degree inner layer was discussed. In addition, the fundamental frequency of the composite pressure vessel, considered as the S/N ratio for the larger better value of Taguchi method, was evaluated for the nine models. It is concluded that a vessel with shorter cylinder is better, while a vessel with cross ply lamination is unfavorable, for the high-frequency design.
1.D. Bogdanoski, “Innovative automated factory starts to produce composite CNG solutions for one of the most-progressive auto-brands,” Reinforced Plastics, 2017.
2.M. Perl and M. Steiner, “3-D stress intensity factors due to full autofrettage for inner radial or coplanar crack arrays and ring cracks in a spherical pressure vessel”, Engineering Fracture Mechanics, Vol. 138, pp. 233-249, 2015.
3.總和研究所(捷胤工業),結構用複合材料技術應用,捷胤工業有限公司,台南,2012,網址:http://www.newjein.com.tw/upload/20121223163848219.pdf,引用時間:2016/7/30。
4.莊達平與王正煥,武器用結構複合材料介紹,新新科技年刊,第42卷,頁18-28,2014年3月。
5.蔡旻軒,纖維纏繞複材壓力容器於液壓試驗的音洩研究,國立交通大學機械工程學系研究所碩士論文,2011。
6.纖維纏繞複合材料氣瓶的發展及其標準情況,惠柏新材料科技股份有限公司, http://www.wellsepoxy.com/index.php?m=content&a=newscontent&id=164&catid=66,引用時間:2017/5/31。
7.徐武軍,高分子材料導論,五南圖書出版股份有限公司,台北,1997。
8.梁卓中、楊明放、王正煥與陳弘文,平衡平面纖維纏繞不等開口固體火箭發動機端蓋之結構設計與分析,中國航空太空學會學刊,第35卷,第2期,頁123-133,2003。
9.https://www.moneydj.com/KMDJ/Wiki/WikiViewer.aspx?KeyID=f2ada7ab-c0ac-4932-8a9b-8239c2676ba6,引用時間:2016/10/3。
10.ISO 11439, “Gas cylinders - High pressure cylinders for the on-board storage of natural gas as a fuel for automotive vehicles,” Standards Catalogue, 2013.
11.http://www.compositesworld.com/articles/next-generation-pressure-vessels, retrieved on May 31, 2017.
12.R.K. Kapania, “A review on the analysis of laminated shells,” J. Pressure Vessel Technol., Vol. 111, pp. 88-96, 1989.
13.J.N. Reddy, “Finite element modeling of layered, anisotropic composite plates and shells:review of recent research,” Shock Vibration Digest, Vol. 13, pp. 3-12, 1981.
14.W.C. Chao and J.N. Reddy, “Analysis of laminated composite shells using a degenerated 3-D element,” International Journal for Numerical Methods in Engineering, Vol. 20, pp. 1991-2007, 1984.
15.M.S. Qatu, “Natural frequencies for cantilevered doubly-curved laminated composite shallow shells,” Composite Structures, Vol. 17, pp. 227-255, 1991.
16.D. Chakravorty, P.K. Sinha and J.N. Bandyopadhyay, “Free vibration analysis of point supported laminated composite doubly curved shells- a finite element approach,” Computers & Structures, Vol. 54, pp. 191-207, 1995.
17.D. Chakravorty, P.K. Sinha and J.N. Bandyopadhyay, “Finite element free vibration analysis of doubly curved laminated composite shells,” Journal of Sound and Vibration, Vol. 191, pp. 491-504, 1996.
18.D. Chakravorty, P.K. Sinha and J.N. Bandyopadhyay, “Applications of FEM on free and forced vibration of laminated shells,” ASCE-Journal of The Engineering Mechanics, Vol. 124, pp. 1-8, 1998.
19.D.K. Shin, “Large amplitude free vibration behavior of doubly curved shallow open shells with simply supported edges,” Computers & Structures, Vol. 62, pp. 35-49, 1997.
20.D.Y. Tan, “Free vibration analysis of shells of revolution,” Journal of Sound and Vibration, Vol. 213, pp. 15-33, 1998.
21.H.L. Dai and X. Wang, “Stress wave propagation in laminated piezoelectric spherical shells under thermal shock and electric excitation,” European Journal of Mechanics-A/Solids, Vol. 24, pp. 263-276, 2005.
22.A. Kumar, A. Chakrabarti and P. Bhargava, “Vibration of laminated composite shells with cutouts using higher order theory,” International Journal Science and Research, Vol. 4, pp. 199-202, 2013.
23.T. Ye, G. Jin, Y. Chen, X. Ma and Z. Su, “Free vibration analysis of laminated composite shallow shells with general elastic boundaries,” Composite Structures, Vol. 106, pp. 470-490, 2013.
24.T. Ye, G. Jin, Y. Chen and S. Shi, “A unified formulation for vibration analysis of open shells with arbitrary boundary conditions,” International Journal of Mechanical Sciences, Vol. 81, pp. 42-59, 2014.
25.G. Jin, T. Ye, X. Jia and S. Gao, “A general Fourier solution for the vibration analysis of composite laminated structure elements of revolution with general elastic restraints,” Composite Structures, Vol. 109, pp. 150-168, 2014.
26.S. Sahoo, “Laminated composite stiffened shallow spherical panels with cutouts under free vibration – A finite element approach”, Engineering Science and Technology, Vol. 17, pp. 247-259, 2014.
27.M. Qatu, E. Asadi and W. Wang, “Recent research advances on the dynamic analysis of composite shells:2000–2009,” Composite Structures, Vol. 93, pp. 14-31, 2010.
28.M. Qatu, E. Asadi and W. Wang, “Review of recent literature on static analyses of composite shells: 2000-2010,” Open Journal of Composite Materials, Vol. 2, pp. 61-86, 2012.
29.A.A. Krikanov, “Composite pressure vessels with higher stiffness”, Composite Structures, Vol. 48, pp. 119-127, 2000.
30.P. Xu, J.Y. Zheng and P.F. Liu, “Finite element analysis of burst pressure of composite hydrogen storage vessels”, Materials & Design, Vol. 30, pp. 2295-2301, 2009.
31.L. Parnas and N. Katırcı, “Design of fiber-reinforced composite pressure vessels under various loading conditions,” Composite Structures, Vol. 58, pp. 83-95, 2002.
32.A. Onder, O. Sayman, T. Dogan and N. Tarakcioglu, “Burst failure load of composite pressure vessels,” Composite Structures, Vol. 89, pp. 159-166, 2009.
33.H.H. Mian, G. Wang, U.A. Dar and W. Zhang, “Optimization of composite material system and lay-up to achieve minimum weight pressure vessel,” Applied Composite Materials, Vol. 20, pp. 873-889, 2013.
34.E. Fathallah, H. Qi and L. Tong, “Design optimization of lay-up and composite material system to achieve minimum buoyancy factor for composite elliptical submersible pressure hull,” Composite Structures, Vol. 121, pp. 16-26, 2015.
35.Z. Yue and X. Li, “Numerical simulation of all-composite compressed natural gas (CNG) cylinders for vehicle,” Procedia Engineering, Vol. 37, pp. 31-36, 2012.
36.M. Nirbhay, S. Juneja, A. Dixit, R.K. Misra and S. Sharma, “Finite element analysis of all composite CNG Cylinders,” Procedia Materials Science, Vol. 10, pp. 507-512, 2015.
37.R.F. Gibson, Principles of Composite Material Mechanics, 2nd ed., CRC Press, U.S, 2007.
38.ASTM D3039/D3039M-14, “Standard Test Method for Tensile Properties of Fiber-Resin Composites,” Annual Book of ASTM Standards, 2014.
39.ASTM D3518-13, “Standard Practice for In-plane Shear Stress-strain Response of Unidirectional Reinforced Plastics,” Annual Book of ASTM Standards, 2013.
40.J.W. Dally and W.F. Riley, Experimental stress analysis, McGraw-Hill, New York, 1991.
41.L.A. Carlsson and R.B. Pipes, Experimental Characterization of Advanced Composite Materials, New Jersey, Prentic-Hall, 1987.
42.ASTM D792-08, “Standard Test Method for Density and Specific Gravity (Relative Density) of Plastic by Displacement,” Annual Book of ASTM Standards, 2008.
43.R.D. Cook, D.S. Malkus, M.E. Plesha and R.J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed., Wiley, Danvers, 2002.
44.S.S. Rao, Mechanical Vibrations, 5th ed., Pearson Education, Inc., Singapore, 2011.
45.王栢村,振動知多少?,科學發展,第413期,頁46~52,2007。
46.M.S. Qatu, Vibration of Laminated Shells and Plates, 1st ed., Elsevier Ltd., Amsterdam, 2004.
47.R.D. Mindlin, “Influence of rotatory inertia and shear deformation on flexural motion of isotropic, elastic plates,” Journal of Applied Mechanics, Vol. 18, pp. 31-38, 1958.
48.ANSYS Release 12.1, ANSYS, Inc., PA, 2009.
49.ANSYS User’s Manual, ANSYS, Inc.
50.J.M. Gere, Mechanics of Materials, 6th ed., Thomson Learing Publication, 2003.
51.J.A. Collins, Failure of Materials in Mechanical in Design, John Wiley & Sons, 1981.
52.張季娜、羅仕勇、宋振昌、蔡彰文、陳世璉、莊泰旭、邱鎮宏與高述崙,田口式品質工程導論,中華民國品質管制學會,台北,1989。
53.黎正中譯,穩健設計之品質工程,台北圖書有限公司,台北,1993。
54.E. Volterra and J.H. Gaines原著,唐山譯,高等材料力學,正文書局有限公司,台北,1980。
55.王曉宏、張博明、劉長喜與杜善義,纖維纏繞複合材料壓力容器漸進損傷分析,計算力學學報,第26卷,第3期,頁446-452,2009年6月。
56.AD Group-P. Prepreg, High performance structural application, Advanced International Multitech Co., Ltd., 2016.
57.http://www.matweb.com, retrieved on May 31, 2017.
58.嚴厚宇,壓力容器承座結構分析與評估,國立成功大學機械工程學系研究所碩士論文,2013。
59.張超群與陳文川,汽車噪音與振動問題之故障診斷及排除,第二版,五南圖書出版股份有限公司,台北,2013。