研究生: |
邱茂森 Mau-Sen Chiu |
---|---|
論文名稱: |
X光共振腔之24光動力繞射計算 Dynamical calculation for X-Ray 24-beam diffraction in a Fabry-Perot cavity of silicon |
指導教授: |
張石麟
Shih-Lin Chang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 185 |
中文關鍵詞: | X光共振腔 、動力繞射 、複繞射 |
外文關鍵詞: | X-Ray Fabry-Perot cavity, Dynamical diffraction, Multiple-beam diffraction |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
2004年張石麟教授等人已成功地觀察到X光共振腔中的共振干涉現象.然而,此一現象須由X光動力繞射理論方能解釋. 因此,本論文冀求透過理論計算的方式來嘗試對此一現象提供物理上的解釋. 吾人採用1997年由Stetsko博士與張教授所發展的解X光動力繞射方程式的演算法來處理此一問題. 此一演算法的精神主要在於解一矩陣形式的固有值代數方程 (eigenvalue-eigenvector equation).其所解出的固有向量 (eigenvector) 則代表晶體內繞射光的電場向量, 藉由電磁學中的邊界條件 (即電磁場的連續性), 即可得出晶體外繞射光的電場向量.
當X光的能量達到14.4388 keV並垂直入射矽質共振腔的 (12 4 0) 原子面時,將產生背向繞射光, 並在腔內來回反射, 產生同調干涉進而形成共振干涉的同心圓. 由於晶體的對稱性,此時將有24光同時滿足布拉格定律而被激發並傳遞. 因此,此一共振干涉同心圓還伴隨著複繞射所產生的九條通過圓心的徑向條紋.吾人的計算結果與此一現象相符. 固有值方程式中的固有值其實部給出了色散表面, 而虛部則對應到線性吸收係數. 繞射光的相位則由固有向量的實部及虛部所決定. 此外, 激發模態的計算則同時需要利用到固有值及固有向量. 此四個物理量的計算及繪圖必須將固有值及固有向量做一排序的動作,方能得出正確的結果. 此一過程須手動完成, 因此非常曠日費時. 若只需計算繞射光的強度則不須要做排序的動作. 仔細觀察色散表面及線性吸收係數, 吾人發現在全反射區域線性吸收係數特別大, 這表示吸收越大反射也越大.而繞射光的相位在此區域也變化得非常明顯.
張教授所使用的共振腔為在同一片矽晶圓表面蝕刻出相距100微米的兩片互相平行且同樣大小及厚度的平行板.吾人想瞭解在不同厚度及間距的情況下對共振腔的反射率及穿透率的影響. 因此,吾人也針對各種厚度及間距計算其反射率及穿透率.
總之,吾人已成功發展出此一電腦程式來做X光動力繞射計算,而計算的結果也與實驗結果一致.而色散表面, 線性吸收係數, 繞射光的相位及激發模態的計算則讓我們對此一共振現象有更深入的瞭解.
Abstract
This dissertation aims at developing a theoretical approach to treat the 24-wave diffraction occurred in a Fabry-Perot type of resonant cavity of silicon by solving an eigenvalue-eigenvector equation, derived by Stetsko and Chang, deduced from the X-ray multiple-wave dynamical diffraction equation. We anticipate the calculations can offer a crystal clear physical picture for the experimental resonance pattern of the 24-wave diffraction in the X-ray Fabry-Perot cavity, and aid us design an appropriate resonant cavity to fulfill the experimental purposes.
The resonance pattern accompanied by nine coplanar diffractions occurred in an X-ray Fabry-Perot cavity of silicon at photon energy of 14.4388 keV at which 24 beams are simultaneously excited has been realized by employing the back diffraction of (12 4 0) by Chang et al.. The calculation is in a good agreement with the observed one. The interference fringes of the concentric rings accompanied by nine diffraction lines passing through the center of rings distinctly show up in the calculated pattern. Meanwhile, the dispersion surface and the linear absorption coefficient have been mapped out from the solved eigenvalues. The excitation of mode and the phases of the diffracted waves have also been calculated from the solved eigenvalues and eigenvectors and from boundary conditions. According to the calculated dispersion surface and linear absorption coefficient, we find that in the total reflection region, most of energy is reflected off the crystal, and the absorption reaches the maximum value, and the phase of the diffracted waves changes drastically. In the exact 24-wave region, the phase of the diffracted wave changes further by doubling the values.
The effect of the crystal thickness and the gap width on the reflectivity and transmissivity are also surveyed. The larger the reflectivity and the lower the transmissivity, the thicker is the crystal plate. The more the number of the resonance peaks, the wider is the gap width between the two plates. The time response curves of the cavity show a periodic structure of time due to the interference among the resonance peaks.
In brief, we have established a theoretical approach to treat the multiple-wave diffraction in the Fabry-Perot type of resonant cavity. The calculation is in a good agreement with the observed one. The procedures for the dynamical calculations are also offered in this dissertation.
Reference
[1] Als-Nielsen, J. and McMorrow, D. (2001). Elements of modern X-ray physics, (John-Wiley & Sons, Inc., New York)
[2] Ashcroft N. W. and Mermin N. D. (1976). Solid State Physics (Brooks/Cole, Thomson Learning)
[3] Attwood, D. (2000), Soft X-rays and extreme ultraviolet radiation, (Cambridge university press, United Kingdom)
[4] Authier, A. (2004). Dynamical theory of X-ray Diffraction, (Oxford university press, Oxford)
[5] Batterman, B. W. and Cole, H. (1964). Dynamical diffraction of X-rays by perfect crystals, Rev. Mod. Phys. 36, 681-717.
[6] Bond, W. L., Duguay, M. A., Rentzepis, P. M., (1967). Proposed resonator for X-ray laser, Appl. Phys. Lett. 10, 216-218.
[7] Born, M. and Wolf, E. (1999). Principles of Optics, 7th edition (Cambridge University Press, Cambridge)
[8] Brümmer, O., Höche, H. R. And Niber, J. (1979). X-ray diffraction in the Bragg case at Bragg angles of about π/2, Phys. Stat. Solidi (a) 53, 565-570
[9] Caticha, A., Aliberty, K., and Caticha-Ellis, S. (1996). A Fabry-Perot interferometer for sub-meV x-ray energy resolution, Rev. Sci. Instrum. 67, 3380-1~-5
[10] Caticha, A., Caticha, N., Caticha-Ellis, S. (1989). Resonant cavity for the stimulated emission of x rays, Appl. Phys. Lett. 54, 887-889
[11] Caticha, A. and Caticha-Ellis, S. (1982). Dynamical theory of X-ray diffraction at Bragg angle nearπ/2, Phys. Rev. B, 25, 971-983
[12] Caticha, A. and Caticha-Ellis, S. (1990a). Dynamical theory of X-ray diffraction by thin crystals at angles near π/2, Phys. Stat. Solidi (a) 119, 47-54
[13] Caticha, A. and Caticha-Ellis, S. (1990b). A Fabry-Perot interferometer for hard X-rays. Phys. Stat. Solidi (a) 119, 643-654
[14] Ceglio, N. M., Gaines, D. P., Trebes, J. E., London, R. A., and Stearns, D. G.. Time-resolved measurement of double-pass amplification of soft x-ray lasers, (1988). Appl. Opt. 27, 5022-5025
[15] Chang, S.-L. (2004). X-ray Multiple-Wave Diffraction: Theory and Application, (Springer-Verlag, Berlin)
[16] Chang, S.-L., Stesko, Y. P., Tang, M.-T., Lee, Y.-R., Sun, W.-H., Yabashi, M., and Ishikawa, T. (2005). X-ray resonance in crystal cavites: Realization of Fbry-Perot resonator for hard X rays, Phys. Rev. Lett. 94, 174801-1~-4
[17] Chang, S.-L., Stesko, Y. P., Tang, M.-T., Lee, Y.-R., Sun, W.-H., Yabashi, M., Ishikawa, T., Wu, H.-H., Shew, B.-Y., Lin, Y.-H., Kuo, T.-T., Tamssaku, K., Miwa, D., Chen, S.-Y., Chang, Y.-Y., and Shy, J.-T. (2006). Crystal cavity resonance for hard x rays: A diffraction experiment, Phys. Rev. B, 74, 134111-1 ~ -12
[18] Chang, S.-L. and Tang, M.-T., (1988). Quantitative determination of phases of X-ray reflections from three-beam diffraction. I. Theoretical considerations, Acta Cryst. A44, 1065-1072
[19] Compaq Visual Fortran 6.6b (2002). Professional Edition, including the IMSL library.
[20] Colella, R. (1974). Multiple Diffraction of X-rays and Phase Problem. Computational Procedures and Comparison with Experiment, Acta Cryst. A30, 413-423
[21] Colella, R. and Luccio, A. (1984). Proposal for a free electron laser in the X-ray region, Opt. Commun. 50, 41-44
[22] Cruickshank, D. W. J., Juretschke, H. J., Kato, N. (1992). P. P. Ewald and his Dynamical Theory of X-ray Diffraction, (IUCr, Oxford)
[23] Cusatics, C., Udrob, D., Mazzaro, I., Giles, C. and Tolentino, H. (1996). X-ray back-diffraction profiles with a Si (111) plate, Acta cryst. A52, 614-620
[24] Darwin, C. G. (1914).The theory of X-ray reflection, Phil. Mag., 27, 675-690.
[25] Denne, W. A. (1978). High-flux micro-resonators for X- and γ-lasers, Acta cryst. A34, 1028-1029
[26] Deslattes, R. D. (1968). X-ray monochromators and resonators from single crystal, Apl. Phys. Lett., 12, 133-135.
[27] Deutsch, M. and Hart, M. (1985). Electronic charge distribution in silicon, Phys. Rev. B 31, 3846-3858
[28] Eastham, D. A. (1989), Atomic Physics of Lasers, (Taylor & Francis)
[29] Ewald, P. P. (1916). Ann. Physik, 49, 1-38.
[30] Ewald, P. P. and Heno, Y. (1968). Acta Cryst. A24, 5-15
[31] Fabry, C. and Perot, A. (1899). Theorie et applications d’une nouvelle methode de spectroscopie interferentielle, Ann. Chim. Phys. 7, 115-144
[32] Giacovazzo, G., Monaco, H. L., Artioli, G., Viterbo, D., Ferraris, G., Gilli G., Zanotti, G., Catti, M. (2002). Fundamentals of Crystallography, 2nd ed. (Oxford University Press, Oxford)
[33] Giles, C. and Cusatis, C. (1991). Measurements of the transmitted diffraction profiles on Bragg angles at π/2, Appl. Phys. Lett. 59, 641-643
[34] Graeff, W. and Materlik, G. (1982). Millielectron volt energy resolution in Bragg backscattering, Nucl. Instrum. Methods Phys. Res. 195, 97-103
[35] International Tables for Crystallography (2004). Vol. C, 3rd edition, IUCr.
[36] Jackson J. D. (1999). Classical Electrodynamics, 3rd ed. (John Wiley & Sons, Inc., New York)
[37] Kikuta, S., Imal, Y., Iizuka, T., Yuda, Y., Zhang, X.-W., and Hirano, K. (1998). X-ray diffraction with a Bragg angle near π/2 and its applications, J. Synchrotron Rad. 5, 670-672
[38] Kogelnik H. and Li, T. (1966). Laser Beams and Resonators, Proc. IEEE 54, 1312
[39] Kohn, V. G., Shvyd’ko ,Yu. V., and Gerdau, E. (2000). On the theory of an X-ray Fabry-Perot Interferometer, Phys. Stat. Solidi B, 221, 597-615
[40] Kohra, K. and Matsushita, T. (1972). Some characteristics of dynamical diffraction at a Bragg angle of about π/2, Z. Naturforsch. A27, 484
[41] Kolpakov, A. V., Kuz’min, R. N., and Ryaboy, V. M. (1970). Some characteristics of the Resonators fro X-ray frequencies, J. Appl. Phys. 41, 3549-3550
[42] Kuhn, K. J. (1998). Laser Engineering, (Prentice-Hall)
[43] Kushnir, V. I. and Suvorov, E. V. (1986). Experimental observation of the half-degree angular interval of X-ray reflection in backscattering (θ ≈π/2) from a high-quality crystal, JETP Lett. 44, 262-265
[44] Kushnir, V. I. and Suvorov, E. V. (1990). X-ray backscattering on perfect crystals (2θ = π), Phys. Stat. Solidi. (a) 122, 391-404
[45] Liss, K. D., Hock, R., Gomm, M., Waibel, B., Magerl, A., Krisch, M., and Tucoulou, R. (2000). Storage of x-ray photons in a crystal resonator, Nature (London), 404, 371-373
[46] Milonni, P. W. and Eberly, J. H. (1988). Lasers, (John Wiely & Sons)
[47] Nikulin, A. Y., Souvorov, A., Goodden, K., Tamasaku, K., and Ishikawa, T. (2003). X-ray multi-beam diffraction and imaging at a Bragg reflection with partially coherent radiation, J. Phys. D: Appl. Pyhs. 36, A87-A92
[48] NIST website, http://physics.nist.gov/PhysRefData/FFast/Text/cover.html
[49] Pedrotti F. L. and Pedrotti L. S. (1987). Introduction to Optics, 2nd ed. (Prentice-Hall)
[50] Sakoda, K. (2001). Optical properties of Photonic Crystals, (Springer-Verlag, Berlin)
[51] Shvyd’ko, Yu. V., Gerdau, E., Jaschke, J., Leupold, O., Lucht, M., and Rüter, H. D. (1998). Exact Bragg backscattering of x rays, Phys. Rev. B, 57, 4968-4971
[52] Shvyd’ko, Yu. V., Lerche, M., Wille, H.-C., Gerdau, E., Lucht, M., Rüter, H. D., Alp, E. E., and Khachatryan, R. (2003). Phys. Rev. Lett. 90, 013904-1 ~ -4
[53] Shvyd’ko, Yu. V. (2004). X-Ray Optics, (Springer-Verlan, Berlin)
[54] Stetsko, Yu. P. and Chang, S.-L. (1997). An algorithm for solving multiple-wave dynamical X-ray diffraction equation, Acta Cryst. A53, 28-34
[55] Steyerl, A. and Steinhauser, K.-A. (1979). Proposal of a Fabry-Perot-type interferometer for X-rays. Z. Phys. B 34, 221-227
[56] Sutter, J. P., Alp, E. E., Hu, M. Y., Lee, P. L., Sinn, H., Sturhahn, W., Toellner, T. S., Bortel, G., and Colella, R. (2001). Multiple-beam x-ray diffraction near exact backscattering in silicon, Phys. Rev. B, 63, 094111-1~ -12
[57] von Laue, M. (1931). Ergeb. Exakt. Naturwiss., 10, 133-158.
[58] Weckert, E. And Hummer, K. (1997). Multiple-beam X-ray diffraction for physical determination of reflection phases and its applications, Acta Cryst. A53, 108-143
[59] Woolfson, M. M. (1997). An introduction to X-ray crystallography, 2nd edition (Cambridge university press, United Kingdom)