研究生: |
普莉亞 Priya Vijayaraghavan Radhamma |
---|---|
論文名稱: |
Exploring the Evolution and Unique Properties of Multi-Branched Gold Nanostructures in Biomedicine Exploring the Evolution and Unique Properties of Multi-Branched Gold Nanostructures in Biomedicine |
指導教授: |
黃國柱
Hwang, Kuo Chu |
口試委員: |
袁俊傑
Yuan, Chiun-Jye 吳淑褓 Wu, Shu-Pao 江啟勳 Chiang, Chi-Shiun 宋信文 Sung,Hsing-Wen |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 177 |
中文關鍵詞: | 多分支型奈米材料 、生醫藥物 、光動力治療 |
外文關鍵詞: | Branched Gold nanostructures, Biomedicine, Photodynamic therapy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,貴金屬奈米粒子備受關注,由於它們有良好的光學性質、電性及催化性質,因此在多種應用中具有淺力,其中包含:生物醫學、觸媒以及感測器等。各種形貌金奈米材料已被發表過,而多分支的金奈米材料尤其重要,因為其特殊的形狀,導致近紅外光區有寬的表面電漿共振吸收峰。在本論文第一章中,我們著重於使用晶種成長法來合成金奈米海膽(Au nanoechinus)以及在雙尾陽離子界面活性劑(DC14TAB)控制下成長機制的探討。在其後的幾個章節中,將金奈米海膽的特殊性質應用在生物醫學上,包含癌症的光動力/光熱治療以及多種顯影的應用。
近年來,由於光熱治療的非侵入性特點使得在癌症治療備受重視。光動力治療(PDT)以及光熱治療(PTT)是光療法主要的兩種,其原理是利用感光試劑吸收光以後分別產生活性氧物種(ROS)和熱來達到毒殺細胞的效果。為了要讓照射的光線達到更好的穿深度,感光試劑必須吸收近紅外光(NIR),因為生物組織在波段有最小的吸收,第一個近紅外光視窗波長介於650nm到900nm之間,而第二個近紅外光視窗波長屆在1000nm到1350nm之間,在這兩個波段中有以下幾個特性:低散射、極佳的組織穿深度及微弱自體螢光。第二章中,我們利用金奈米海膽作為PDT的載體,使用兩個近紅外光波段的雷射(915nm& 1064nm)激發產生單重態氧(1O2),進而達到毒殺癌細胞/腫瘤。
癌症是主要人類死因之一,非侵入性治療深層腫瘤組織是目前臨床上的一大挑戰,許多研究中的治療都是為了要克服這問題,但卻只能達到部分腫瘤毒殺或是抑制腫瘤生長。在第三章中,我們將展示如何使用金奈米海膽的PDT以及靜默基因的技術來根除深層組織的腫瘤,在此我們使用分別位於第一跟第二紅外光視窗的低強度雷射作為光源(915nm, 340mW/cm2; 1064nm, 420mW/cm2),本研究為未來深層腫瘤的治療做新的鋪路。
為了要達到更先進治療技術,奈米材料能夠擁有生物顯影應用是非常重要的。生物顯影技術的重要性在於它能夠做深層細胞的研究、提供致命疾病的偵測、狀態及治療等等資訊。在最後一張,我們發表金奈米海膽其三種生物顯影的應用:近紅外光激發/放光的上/下轉換過程、光聲顯影。綜觀本論文探討了金奈米海膽的光學性質以及在癌症的診斷及治療的應用。
In the recent years, noble metal nanoparticles have considerable attention owing to their fascinating optical, electrical and catalytic properties which makes them as potential candidates for various applications including, biomedical, catalysis and sensors. Among various morphologies being reported, anisotropic branch shaped gold nanoarchitechures are of utmost importance due to their unique morphology with broad and tunable localized surface plasmon resonance (LSPR) absorption in the near infra-red (NIR) region of the electromagnetic spectrum. In the first chapter of the thesis, we have primarily focused on the seed-mediated surfactant directed synthesis and its mechanistic investigation of the formation of multi-branch shaped Au nanoechinus using a novel twin tailed cationic surfactant (DC14TAB). In the following chapters, we have also utilized the unique properties of Au nanoechinus in various biomedical applications such as photodynamic/ photothermal therapy of tumors as well as multimodal imaging in broad dimensions.
In the recent years, phototherapy has attracted considerable attention as a powerful technique for treating cancers as well as malignant tumors with minimal invasiveness. Photodynamic therapy (PDT) and photothermal therapy (PTT) are two major phototherapeutic approaches, which require absorption of incoming light by a photosensitizer/reagent to generate reactive oxygen species (ROS) and heat for killing cancer cells, respectively. In order to have a deeper penetration of the incoming light, it is mandatory for a phototherapeutic reagent to absorb the tissue transparent near infra-red (NIR) light, where the biological components have minimum absorbance. The first NIR biological window was located in the region, 650 – 900 nm and the second NIR biological window at 1000 – 1350 nm, which therefore provides low scattering, excellent tissue penetration depths and poor autofluorescence. In the second chapter, we have shown that the photosensitization of singlet O2 from Au NEs can be achieved upon NIR light excitation in both the biological windows (915 and 1064 nm), and subsequently can exert photodynamic therapeutic effects for the destruction of cancer cells/tumors.
Cancer is one of the major diseases leading to human deaths. Complete destruction of deep tissue-buried tumors using non-invasive therapies is a grand challenge in clinical cancer treatments. Many therapeutic modalities were developed to tackle this problem, but only partial tumor suppression or delay growths were usually achieved. In the third chapter, we have demonstrated that complete destruction of deep tissue-buried tumors can be achieved by the combination of gold nanoechinus (Au NEs)-mediated photodynamic therapy (PDT) and gene silencing under ultra-low doses of near infra-red (NIR) light irradiation (915 nm, 340 mW/cm2; 1064 nm, 420 mW/cm2) in the first and second biological windows. Our findings pave out a new direction for the therapeutic design to treat deeply seated tumors in future cancer treatments.
In order to accomplish the scenario of modern theranostics, it is better for the nanomaterials to serve the purpose of intrinsic bioimaging properties in addition to the therapeutic capabilities. Bioimaging is of ultimate importance to have detail study in the underlying complex cellular and pathological events occurring inside body which gives appropriate information about the detection, status and treatment of various fatal diseases. In the last chapter, we have explored that multi-branched gold nanoechinus can serve as a new class of triple modal bioimaging reagent for NIR-to-NIR up-and down-conversion processes as well as photoacoustic imaging. Taken altogether, we have thoroughly explored the optical properties of the multi-branched gold nanoechinus in various biomedical applications for diagnosis and treatment of cancers.
1. Brioude A, Jiang XC, Pileni MP. Optical properties of gold nanorods: DDA simulations supported by experiments. J Phys Chem B. 2005;109:13138-42.
2. Xie W, Qiu P, Mao C. Bio-imaging, detection and analysis by using nanostructures as SERS substrates. J Mater Chem. 2011;21:5190-202.
3. Smirnov E, Peljo P, Scanlon MD, Girault HH. Interfacial Redox Catalysis on Gold Nanofilms at Soft Interfaces. ACS Nano. 2015;9:6565-75.
4. Huang X, Neretina S, El-Sayed MA. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater. 2009;21:4880-910.
5. Liu J, Bo X, Zhao Z, Guo L. Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells. Biosens Bioelectron. 2015;74:71-7.
6. Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM. Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem. 2011;399:3-27.
7. Shen W, Zhang X, Huang Q, Xu Q, Song W. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale. 2014;6:1622-8.
8. Yang TH, Huang LD, Harn YW, Lin CC, Chang JK, Wu CI, et al. High density unaggregated Au nanoparticles on ZnO nanorod arrays function as efficient and recyclable photocatalysts for environmental purification. Small. 2013;9:3169-82.
9. Jia W, Li J, Jiang L. Synthesis of highly branched gold nanodendrites with a narrow size distribution and tunable NIR and SERS using a multiamine surfactant. ACS Appl Mater Interfaces. 2013;5:6886-92.
10. Papst S, Brimble MA, Tilley RD, Williams DE. One-Pot Synthesis of Functionalized Noble Metal Nanoparticles Using a Rationally Designed Phosphopeptide. Particle & Particle Systems Characterization. 2014;31:971-5.
11. Eustis S, el-Sayed MA. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev. 2006;35:209-17.
12. Gudlur S, Sanden C, Matouskova P, Fasciani C, Aili D. Liposomes as nanoreactors for the photochemical synthesis of gold nanoparticles. J Colloid Interface Sci. 2015;456:206-9.
13. Zhang L, Xia K, Bai YY, Tang Y, Deng Y, Chen J, et al. Synthesis of gold nanorods and their functionalization with bovine serum albumin for optical hyperthermia. J Biomed Nanotechnol. 2014;10:1440-9.
14. Xu F, Hou H, Gao Z. Synthesis and crystal structures of gold nanowires with Gemini surfactants as directing agents. Chemphyschem. 2014;15:3979-86.
15. Skrabalak SE, Au L, Li X, Xia Y. Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc. 2007;2:2182-90.
16. Navarro JR, Manchon D, Lerouge F, Blanchard NP, Marotte S, Leverrier Y, et al. Synthesis of PEGylated gold nanostars and bipyramids for intracellular uptake. Nanotechnology. 2012;23:465602.
17. Jena BK, Raj CR. Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen. Langmuir. 2007;23:4064-70.
18. Khalavka Y, Becker J, Sonnichsen C. Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity. J Am Chem Soc. 2009;131:1871-5.
19. Soejima T, Kimizuka N. One-pot room-temperature synthesis of single-crystalline gold nanocorolla in water. J Am Chem Soc. 2009;131:14407-12.
20. Moukarzel W, Fitremann J, Marty JD. Seed-less amino-sugar mediated synthesis of gold nanostars. Nanoscale. 2011;3:3285-90.
21. Li J, Wu J, Zhang X, Liu Y, Zhou D, Sun HZ, et al. Controllable Synthesis of Stable Urchin-like Gold Nanoparticles Using Hydroquinone to Tune the Reactivity of Gold Chloride. Journal of Physical Chemistry C. 2011;115:3630-7.
22. Zhang Y, Wang BY, Yang SH, Li LD, Guo L. Facile synthesis of spinous-like Au nanostructures for unique localized surface plasmon resonance and surface-enhanced Raman scattering. New Journal of Chemistry. 2015;39:2551-6.
23. Wu CC, Chen DH. Spontaneous synthesis of gold nanoparticles on gum arabic-modified iron oxide nanoparticles as a magnetically recoverable nanocatalyst. Nanoscale Res Lett. 2012;7:317.
24. Zhong L, Zhai XD, Zhu XF, Yao PP, Liu MH. Vesicle-Directed Generation of Gold Nanoflowers by Gemini Amphiphiles and the Spacer-Controlled Morphology and Optical Property. Langmuir. 2010;26:5876-81.
25. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B. 2005;109:13857-70.
26. Sau TK, Murphy CJ. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir. 2004;20:6414-20.
27. Liu M, Guyot-Sionnest P. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J Phys Chem B. 2005;109:22192-200.
28. Jana NR. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small. 2005;1:875-82.
29. Langille MR, Personick ML, Zhang J, Mirkin CA. Defining rules for the shape evolution of gold nanoparticles. J Am Chem Soc. 2012;134:14542-54.
30. Liu XH, Luo XH, Lu SX, Zhang JC, Cao WL. A novel cetyltrimethyl ammonium silver bromide complex and silver bromide nanoparticles obtained by the surfactant counterion. J Colloid Interface Sci. 2007;307:94-100.
31. Zhong L, Zhai X, Zhu X, Yao P, Liu M. Vesicle-directed generation of gold nanoflowers by gemini amphiphiles and the spacer-controlled morphology and optical property. Langmuir. 2010;26:5876-81
32. Dreaden EC, Mackey MA, Huang X, Kang B, El-Sayed MA. Beating cancer in multiple ways using nanogold. Chemical Society Reviews. 2011;40:3391-404.
33. Weissleder R. A clearer vision for in vivo imaging. Nat Biotech. 2001;19:316-7.
34. Smith AM, Mancini MC, Nie S. Bioimaging: Second window for in vivo imaging. Nat Nano. 2009;4:710-1.
35. Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. Journal of the American Chemical Society. 2006;128:2115-20.
36. Choi WI, Kim J-Y, Kang C, Byeon CC, Kim YH, Tae G. Tumor Regression In Vivo by Photothermal Therapy Based on Gold-Nanorod-Loaded, Functional Nanocarriers. ACS Nano. 2011;5:1995-2003.
37. Antaris AL, Robinson JT, Yaghi OK, Hong G, Diao S, Luong R, et al. Ultra-Low Doses of Chirality Sorted (6,5) Carbon Nanotubes for Simultaneous Tumor Imaging and Photothermal Therapy. ACS Nano. 2013;7:3644-52.
38. Ghosh S, Dutta S, Gomes E, Carroll D, D’Agostino R, Olson J, et al. Increased Heating Efficiency and Selective Thermal Ablation of Malignant Tissue with DNA-Encased Multiwalled Carbon Nanotubes. ACS Nano. 2009;3:2667-73.
39. Fang W, Tang S, Liu P, Fang X, Gong J, Zheng N. Pd Nanosheet-Covered Hollow Mesoporous Silica Nanoparticles as a Platform for the Chemo-Photothermal Treatment of Cancer Cells. Small. 2012;8:3816-22.
40. Hessel CM, P. Pattani V, Rasch M, Panthani MG, Koo B, Tunnell JW, et al. Copper Selenide Nanocrystals for Photothermal Therapy. Nano Letters. 2011;11:2560-6.
41. Chen Z, Wang Q, Wang H, Zhang L, Song G, Song L, et al. Ultrathin PEGylated W18O49 Nanowires as a New 980 nm-Laser-Driven Photothermal Agent for Efficient Ablation of Cancer Cells In Vivo. Advanced Materials. 2013;25:2095-100.
42. Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Letters. 2008;269:57-66.
43. Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, et al. Gold Nanocages as Photothermal Transducers for Cancer Treatment. Small. 2010;6:811-7.
44. Ma Y, Liang X, Tong S, Bao G, Ren Q, Dai Z. Gold Nanoshell Nanomicelles for Potential Magnetic Resonance Imaging, Light-Triggered Drug Release, and Photothermal Therapy. Advanced Functional Materials. 2013;23:815-22.
45. Wang Y, Black KCL, Luehmann H, Li W, Zhang Y, Cai X, et al. Comparison Study of Gold Nanohexapods, Nanorods, and Nanocages for Photothermal Cancer Treatment. ACS Nano. 2013;7:2068-77.
46. Tsai M-F, Chang S-HG, Cheng F-Y, Shanmugam V, Cheng Y-S, Su C-H, et al. Au Nanorod Design as Light-Absorber in the First and Second Biological Near-Infrared Windows for in Vivo Photothermal Therapy. ACS Nano. 2013;7:5330-42.
47. Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer. 2006;6:535-45.
48. Cui S, Yin D, Chen Y, Di Y, Chen H, Ma Y, et al. In Vivo Targeted Deep-Tissue Photodynamic Therapy Based on Near-Infrared Light Triggered Upconversion Nanoconstruct. ACS Nano. 2012;7:676-88.
49. Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med. 2012;18:1580-5.
50. Boyer J-C, van Veggel FCJM. Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale. 2010;2:1417-9.
51. Wang F, Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chemical Society Reviews. 2009;38:976-89.
52. Nikoobakht B, Wang J, El-Sayed MA. Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition. Chemical Physics Letters. 2002;366:17-23.
53. Cui S, Yin D, Chen Y, Di Y, Chen H, Ma Y, et al. In Vivo Targeted Deep-Tissue Photodynamic Therapy Based on Near-Infrared Light Triggered Upconversion Nanoconstruct. ACS Nano. 2012;7:676-88.
54. Wang Y-F, Liu G-Y, Sun L-D, Xiao J-W, Zhou J-C, Yan C-H. Nd3+-Sensitized Upconversion Nanophosphors: Efficient In Vivo Bioimaging Probes with Minimized Heating Effect. ACS Nano. 2013;7:7200-6.
55. Park YI, Kim HM, Kim JH, Moon KC, Yoo B, Lee KT, et al. Theranostic Probe Based on Lanthanide-Doped Nanoparticles for Simultaneous In Vivo Dual-Modal Imaging and Photodynamic Therapy. Advanced Materials. 2012;24:5755-61.
56. Vankayala R, Sagadevan A, Vijayaraghavan P, Kuo C-L, Hwang KC. Metal Nanoparticles Sensitize the Formation of Singlet Oxygen. Angewandte Chemie International Edition. 2011;50:10640-4.
57. Pasparakis G. Light-Induced Generation of Singlet Oxygen by Naked Gold Nanoparticles and its Implications to Cancer Cell Phototherapy. Small. 2013:n/a-n/a.
58. Vankayala R, Kuo C-L, Sagadevan A, Chen P-H, Chiang C-S, Hwang KC. Morphology dependent photosensitization and formation of singlet oxygen (1[capital Delta]g) by gold and silver nanoparticles and its application in cancer treatment. Journal of Materials Chemistry B. 2013;1:4379-87.
59. Vankayala R, Huang Y-K, Kalluru P, Chiang C-S, Hwang KC. First Demonstration of Gold Nanorods-Mediated Photodynamic Therapeutic Destruction of Tumors via Near Infra-Red Light Activation. Small. 2013:n/a-n/a.
60. Kalluru P, Vankayala R, Chiang C-S, Hwang KC. Photosensitization of Singlet Oxygen and In vivo Photodynamic Therapeutic Effects Mediated by PEGylated W18O49 Nanowires. Angewandte Chemie International Edition. 2013:n/a-n/a.
61. Gole A, Murphy CJ. Seed-Mediated Synthesis of Gold Nanorods: Role of the Size and Nature of the Seed. Chemistry of Materials. 2004;16:3633-40.
62. Sau TK, Murphy CJ. Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution. Langmuir. 2004;20:6414-20.
63. Suh JY, Odom TW. Nonlinear properties of nanoscale antennas. Nano Today. 2013;8:469-79.
64. Lohse SE, Murphy CJ. The Quest for Shape Control: A History of Gold Nanorod Synthesis. Chemistry of Materials. 2013;25:1250-61.
65. Liu XO, Atwater M, Wang JH, Huo Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces B-Biointerfaces. 2007;58:3-7.
66. Habash RW, Bansal R, Krewski D, Alhafid HT. Thermal therapy, part 1: an introduction to thermal therapy. Crit Rev Biomed Eng. 2006;34:459-89.
67. Kuo W-S, Chang Y-T, Cho K-C, Chiu K-C, Lien C-H, Yeh C-S, et al. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials. 2012;33:3270-8.
68. Castellana ET, Gamez RC, Russell DH. Label-Free Biosensing with Lipid-Functionalized Gold Nanorods. Journal of the American Chemical Society. 2011;133:4182-5.
69. Niidome Y, Honda K, Higashimoto K, Kawazumi H, Yamada S, Nakashima N, et al. Surface modification of gold nanorods with synthetic cationic lipids. Chemical Communications. 2007:3777-9.
70. Orendorff CJ, Alam TM, Sasaki DY, Bunker BC, Voigt JA. Phospholipid−Gold Nanorod Composites. ACS Nano. 2009;3:971-83.
71. Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer. 2012;12:237-51.
72. Arnedos M, Soria J-C, Andre F, Tursz T. Personalized treatments of cancer patients: A reality in daily practice, a costly dream or a shared vision of the future from the oncology community? Cancer Treatment Reviews. 2014;40:1192-8.
73. Whitson BA, Groth SS, Duval SJ, Swanson SJ, Maddaus MA. Surgery for Early-Stage Non-Small Cell Lung Cancer: A Systematic Review of the Video-Assisted Thoracoscopic Surgery Versus Thoracotomy Approaches to Lobectomy. The Annals of Thoracic Surgery. 2008;86:2008-18.
74. Cheng Y, Meyers JD, Broome A-M, Kenney ME, Basilion JP, Burda C. Deep Penetration of a PDT Drug into Tumors by Noncovalent Drug-Gold Nanoparticle Conjugates. Journal of the American Chemical Society. 2011;133:2583-91.
75. Huang X, Jain P, El-Sayed I, El-Sayed M. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci. 2008;23:217-28.
76 Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer. 2006;6:535-45.
77. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, et al. Photodynamic therapy of cancer: An update. CA: A Cancer Journal for Clinicians. 2011;61:250-81.
78. Cui S, Yin D, Chen Y, Di Y, Chen H, Ma Y, et al. In Vivo Targeted Deep-Tissue Photodynamic Therapy Based on Near-Infrared Light Triggered Upconversion Nanoconstruct. ACS Nano. 2012;7:676-88.
79. Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med. 2012;18:1580-5.
80. Punjabi A, Wu X, Tokatli-Apollon A, El-Rifai M, Lee H, Zhang Y, et al. Amplifying the Red-Emission of Upconverting Nanoparticles for Biocompatible Clinically Used Prodrug-Induced Photodynamic Therapy. ACS Nano. 2014;8:10621-30.
81. Tsai M-F, Chang S-HG, Cheng F-Y, Shanmugam V, Cheng Y-S, Su C-H, et al. Au Nanorod Design as Light-Absorber in the First and Second Biological Near-Infrared Windows for in Vivo Photothermal Therapy. ACS Nano. 2013;7:5330-42.
82. Vijayaraghavan P, Liu C-H, Vankayala R, Chiang C-S, Hwang KC. Designing Multi-Branched Gold Nanoechinus for NIR Light Activated Dual Modal Photodynamic and Photothermal Therapy in the Second Biological Window. Advanced Materials. 2014;26:6689-95.
83. Liu X, Wang W, Samarsky D, Liu L, Xu Q, Zhang W, et al. Tumor-targeted in vivo gene silencing via systemic delivery of cRGD-conjugated siRNA. Nucleic Acids Research. 2014.
84. Xu W-J, Zhang S, Yang Y, Zhang N, Wang W, Liu S-Y, et al. Efficient Inhibition of Human Colorectal Carcinoma Growth by RNA Interference Targeting Polo-Like Kinase 1 In Vitro and In Vivo. Cancer Biotherapy & Radiopharmaceuticals. 2011;26:427-36.
85. Blander G, de Oliveira RM, Conboy CM, Haigis M, Guarente L. Superoxide Dismutase 1 Knock-down Induces Senescence in Human Fibroblasts. Journal of Biological Chemistry. 2003;278:38966-9.
86. Orendorff CJ, Alam TM, Sasaki DY, Bunker BC, Voigt JA. Phospholipid−Gold Nanorod Composites. ACS Nano. 2009;3:971-83.
87. Vankayala R, Chiang C-S, Chao J-I, Yuan C-J, Lin S-Y, Hwang KC. A general strategy to achieve ultra-high gene transfection efficiency using lipid-nanoparticle composites. Biomaterials. 2014;35:8261-72.
88. Vankayala R, Huang Y-K, Kalluru P, Chiang C-S, Hwang KC. First Demonstration of Gold Nanorods-Mediated Photodynamic Therapeutic Destruction of Tumors via Near Infra-Red Light Activation. Small. 2014;10:1612-22.
89. Vankayala R, Lin C-C, Kalluru P, Chiang C-S, Hwang KC. Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light. Biomaterials. 2014;35:5527-38.
90. Wang H, Ghosh A, Baigude H, Yang C-s, Qiu L, Xia X, et al. Therapeutic Gene Silencing Delivered by a Chemically Modified Small Interfering RNA against Mutant SOD1 Slows Amyotrophic Lateral Sclerosis Progression. Journal of Biological Chemistry. 2008;283:15845-52.
91. Park YI, Kim HM, Kim JH, Moon KC, Yoo B, Lee KT, et al. Theranostic Probe Based on Lanthanide-Doped Nanoparticles for Simultaneous In Vivo Dual-Modal Imaging and Photodynamic Therapy. Advanced Materials. 2012;24:5755-61.
92. Yang K, Xu H, Cheng L, Sun C, Wang J, Liu Z. In Vitro and In Vivo Near-Infrared Photothermal Therapy of Cancer Using Polypyrrole Organic Nanoparticles. Advanced Materials. 2012;24:5586-92.
93. Kim S-S, Ye C, Kumar P, Chiu I, Subramanya S, Wu H, et al. Targeted Delivery of siRNA to Macrophages for Anti-inflammatory Treatment. Mol Ther. 2010;18:993-1001.
94. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 Antiapoptotic Proteins Inhibit Beclin 1-Dependent Autophagy. Cell. 2005;122:927-39.
95. Kim JW, Sahm H, You J, Wang J. Knock-down of Superoxide Dismutase 1 Sensitizes Cisplatin-resistant Human Ovarian Cancer Cells. Anticancer Research. 2010;30:2577-81.
96. Weissleder, R. and M.J. Pittet, Imaging in the era of molecular oncology. Nature, 2008. 452(7187): p. 580-9.
97. Wang, X., et al., High-fidelity hydrophilic probe for two-photon fluorescence lysosomal imaging. J Am Chem Soc, 2010. 132(35): p. 12237-9.
98. Cheon, J. and J.H. Lee, Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res, 2008. 41(12): p. 1630-40.
99. Sevick-Muraca, E.M., J.P. Houston, and M. Gurfinkel, Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr Opin Chem Biol, 2002. 6(5): p. 642-50.
100. Key, J. and J.F. Leary, Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomedicine, 2014. 9: p. 711-26.
101. Kim, J.S., et al., Development and in vivo imaging of a PET/MRI nanoprobe with enhanced NIR fluorescence by dye encapsulation. Nanomedicine (Lond), 2012. 7(2): p. 219-29.
102. Srivatsan, A. and X. Chen, Recent advances in nanoparticle-based nuclear imaging of cancers. Adv Cancer Res, 2014. 124: p. 83-129.
103. Swierczewska, M., S. Lee, and X. Chen, Inorganic nanoparticles for multimodal molecular imaging. Mol Imaging, 2011. 10(1): p. 3-16.
104. Zhang, Y., et al., In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles. Int J Nanomedicine, 2014. 9: p. 33-41.
105. Zhou, J., Z. Liu, and F. Li, Upconversion nanophosphors for small-animal imaging. Chem Soc Rev, 2012. 41(3): p. 1323-49.
106. Kruger, R.A., Photoacoustic ultrasound. Med Phys, 1994. 21(1): p. 127-31.
12. Jobsis, F.F., Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 1977. 198(4323): p. 1264-7.
107. Xiong, L., et al., Synthesis of ligand-functionalized water-soluble [18F]YF3 nanoparticles for PET imaging. Nanoscale, 2013. 5(8): p. 3253-6.
108. Wang, F., et al., Tuning upconversion through energy migration in core-shell nanoparticles. Nat Mater, 2011. 10(12): p. 968-73.
109. Xiong, L.Q., et al., Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials, 2009. 30(29): p. 5592-600.
110. Li, Z. and Y. Zhang, An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology, 2008. 19(34): p. 345606.
111. Auzel, F., Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev, 2004. 104(1): p. 139-73.
112. Liu, Q., et al., Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J Am Chem Soc, 2011. 133(43): p. 17122-5.
113. Boyer, J.C. and F.C.J.M. van Veggel, Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale, 2010. 2(8): p. 1417-1419.
114. Wang, F., X. Xue, and X. Liu, Multicolor tuning of (Ln, P)-doped YVO4 nanoparticles by single-wavelength excitation. Angew Chem Int Ed Engl, 2008. 47(5): p. 906-9.
115. Mahalingam, V., et al., Colloidal Tm3+/Yb3+-Doped LiYF4 Nanocrystals: Multiple Luminescence Spanning the UV to NIR Regions via Low-Energy Excitation. Advanced Materials, 2009. 21(40): p. 4025-+.
116. Zhan, Q.Q., et al., Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation. Acs Nano, 2011. 5(5): p. 3744-3757.
117. Peng, X., et al., A nonfluorescent, broad-range quencher dye for Forster resonance energy transfer assays. Anal Biochem, 2009. 388(2): p. 220-8.
118. Liu, Z., et al., Carbon Nanotubes in Biology and Medicine: In vitro and in vivo Detection, Imaging and Drug Delivery. Nano Research, 2009. 2(2): p. 85-120.
119. Alivisatos, A.P., Semiconductor nanocrystals as fluorescent biological labels. Abstracts of Papers of the American Chemical Society, 1999. 218: p. U296-U296.
120. Flanagan, J.H., et al., Functionalized tricarbocyanine dyes as near-infrared fluorescent probes for biomolecules. Bioconjugate Chemistry, 1997. 8(5): p. 751-756.
121. Philip, R., et al., Absorption and fluorescence spectroscopic investigation of indocyanine green. Journal of Photochemistry and Photobiology a-Chemistry, 1996. 96(1-3): p. 137-148.
122. Lu, W., et al., Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res, 2011. 71(19): p. 6116-21.
123. Pan, D., et al., Molecular photoacoustic tomography with colloidal nanobeacons. Angew Chem Int Ed Engl, 2009. 48(23): p. 4170-3.
124. Ku, G., et al., Copper Sulfide Nanoparticles As a New Class of Photoacoustic Contrast Agent for Deep Tissue Imaging at 1064 nm. Acs Nano, 2012. 6(8): p. 7489-7496.
125. Yang, X., et al., Gold Nanomaterials at Work in Biomedicine. Chemical Reviews, 2015. 115(19): p. 10410-10488.
126. Lim, E.K., et al., Nanomaterials for Theranostics: Recent Advances and Future Challenges. Chemical Reviews, 2015. 115(1): p. 327-394.
127. Vijayaraghavan, P., et al., Complete destruction of deep-tissue buried tumors via combination of gene silencing and gold nanoechinus-mediated photodynamic therapy. Biomaterials, 2015. 62: p. 13-23.
128. Vijayaraghavan, P., et al., Designing multi-branched gold nanoechinus for NIR light activated dual modal photodynamic and photothermal therapy in the second biological window. Adv Mater, 2014. 26(39): p. 6689-95.
129. Wang, Q., et al., Quantum dot bioconjugation during core-shell synthesis. Angew Chem Int Ed Engl, 2008. 47(2): p. 316-9.
130. Wu, C., et al., In vivo far-red luminescence imaging of a biomarker based on BRET from Cypridina bioluminescence to an organic dye. Proc Natl Acad Sci U S A, 2009. 106(37): p. 15599-603.
131. Giepmans, B.N., et al., The fluorescent toolbox for assessing protein location and function. Science, 2006. 312(5771): p. 217-24.
132. Li, C., et al., The cellular uptake and localization of non-emissive iridium(III) complexes as cellular reaction-based luminescence probes. Biomaterials, 2013. 34(4): p. 1223-34.
133. Smith, A.M., M.C. Mancini, and S. Nie, Bioimaging: second window for in vivo imaging. Nat Nanotechnol, 2009. 4(11): p. 710-1.
134. Yi, H., et al., M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett, 2012. 12(3): p. 1176-83.
135. Kim, J.W., et al., Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol, 2009. 4(10): p. 688-94.
136. Heidari, Z., R. Sariri, and M. Salouti, Gold nanorods-bombesin conjugate as a potential targeted imaging agent for detection of breast cancer. J Photochem Photobiol B, 2014. 130: p. 40-6.
137. Vankayala, R., et al., First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infra-red light activation. Small, 2014. 10(8): p. 1612-22.
138. Neupane, B., L. Zhao, and G. Wang, Up-conversion luminescence of gold nanospheres when excited at nonsurface plasmon resonance wavelength by a continuous wave laser. Nano Lett, 2013. 13(9): p. 4087-92.
139. Thomas, R.J., et al., A procedure for laser hazard classification under the Z136.1-2000 American National Standard for Safe Use of Lasers. Journal of Laser Applications, 2002. 14(1): p. 57-66.
140. Pansare, V., et al., Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers. Chem Mater, 2012. 24(5): p. 812-827.
141. Schoppler, F., et al., Molar Extinction Coefficient of Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2011. 115(30): p. 14682-14686.
142. Diao, S., et al., Fluorescence Imaging In Vivo at Wavelengths beyond 1500 nm. Angewandte Chemie-International Edition, 2015. 54(49): p. 14758-14762.
143. Hong, G., et al., Near-infrared-fluorescence-enhanced molecular imaging of live cells on gold substrates. Angew Chem Int Ed Engl, 2011. 50(20): p. 4644-8.
144. Ku, G., et al., Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano, 2012. 6(8): p. 7489-96.
145. Wang, Y.H., et al., Photoacoustic/ultrasound dual-modality contrast agent and its application to thermotherapy. J Biomed Opt, 2012. 17(4): p. 045001.