研究生: |
林鼎超 Lin, Ding-Tsao |
---|---|
論文名稱: |
基板與波長對於氧化亞鐵硫桿菌代謝溶液進行雷射輔助金屬銅沉積之效果 Effects of Substrates and Wavelength on Laser-Assisted Copper Deposition through Thiobacillus Ferrooxidans Metabolite |
指導教授: |
賀陳弘
Hocheng, Hong |
口試委員: |
林士傑
洪景華 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 雷射 、液相化學沉積 、氧化亞鐵硫桿菌代謝溶液 |
外文關鍵詞: | Laser-assisted deposition, T. ferrooxidans culture supernatant, Patterning metallic microstructures |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來無光罩的微結構成型技術逐漸開始受到重視,相較於現今微結構技術中最廣泛使用的光微影技術,不但省去光罩的定義與製作過程,也避免光阻以及真空設備的使用,大幅降低了成本。在本實驗室先前的研究中,經由氧化亞鐵硫桿菌代謝溶液蝕刻金屬銅表面,以形成帶有銅離子的溶液,再藉由1064 nm波長的摻釹釔鋁石榴石雷射聚焦於銅試片上,以X-Y線性滑軌平台引導雷射路徑並輔助銅離子沉積。此金屬微結構直接成型技術結合天然蝕刻液以及雷射引導沉積兩種特性,並發現金屬銅沉積量與雷射功率、掃描速度之倒數及掃描次數間存在著正相關性。本論文則嘗試將銅基板更換為其他常見非導體材料,如PI薄膜、矽基板與二氧化矽基板,以擴大應用性,並使用波長532nm雷射光源,探討不同波長對此技術之影響與比較。
二氧化矽基板相較於其他基板材料可得到較好沉積線表現,並發現其成分將因更換基板而造成影響,而原因為蝕刻時間長短以及蝕刻過程所產生之沉積物。雷射光源的更換發現在同樣的沉積量下,波長532nm雷射將比波長1064nm雷射需要更少的單位能量,並得到較好的沉積線結果。
In recent years, intensive efforts in the development of direct metallization techniques for micro-fabrication have taken place as a result of the convergence of different fields of science and technology. A mask-less fabrication process has been developed on the other hand. The designed micro patterns are written on the specimen by laser guiding to build or repair micro structure rapidly rather than using the mask fabrication process requiring long lead time. We have studied the feasibility of laser-assisted copper deposition on copper substrate using Thiobacillus ferroxidants metabolite as working medium with a 1064nm Nd:YAG laser to form desired patterns, and found there is a positive correlation between the deposition amount and the laser power, scan repetitions and reciprocal of scanning speed, respectively. To expand the application, substrate replacement is in need. The choice of the substrate is mainly determined by the application domain and includes polyimide, Si and SiO2. 532nm laser source is set up to find the effect of wavelength on the deposition lines.
Compare to other substrates, SiO2 showed better performance of deposition continuity. After changing the substrate, both etching time and sediment from etching reaction would affect the composition of the deposition line. Moreover, there were less energy consumption and better deposition results by changing laser source from 1064nm to 532nm.
6 第六章 參考文獻
[1] V. Raghunath , B. Moshe and M.C. Shaw,” Thermal Effects on the Accuracy of Numerically Controlled Machine Tools,” CIRP Annals - Manufacturing Technology, 35, 255-258, (1986)
[2] K. K. B. Hon, L. Li, I. M. Hutchings, ” Direct writing technology—Advances and developments,” CIRP Annals - Manufacturing Technology, 57, 601–620, (2008)
[3] H. Hocheng , J. H. Chang, H. J. Han, Y. L. Chang, H. Y. Chang, “Metal Removal Behavior of Acidithiobacillus Ferrooxidans”, AMPT-In press.
[4] J.C. Wang, “Laser-Assisted Copper Deposition from Thiobacillus ferrooxidans (T.f.) Metabolite”, Master Thesis, Department of Power Mechanical Engeering, Tsing Hua University, Hsinchu, (2008)
[5] D. Bäuerle, ” Laser Processing and Chemistry”, Appl. Surf. Sci. 186, 1-6, (1996)
[6] C. P. Christensen, K. M. Lakin, “Chemical vapor deposition of silicon using a CO2 laser,” Appl. Phys. Lett. 32, 254, (1978)
[7] S. D. Allen, “Laser chemical vapor deposition: A technique for selective area deposition,” J. Appl. Phys. 52, 11, (1981)
[8] O. Lehmann, M. Stuke, ” Three-dimensional Laser Direct Writing of Electrically Conducting and Isolating Microstructures, “ Materials Letters, 21, 131-136, (1994)
[9] J. Sungho ,K. Jinbum ,K. Sunghoon and L. Dongjun, “Laser-assisted chemical vapor deposition of carbon for the growth of high aspect ratio micro rods and direct writing of surface patterns, “ Proc. SPIE, 4830, 177, (2003)
[10] M. E. Gross, A. Appelbaum, K. J. Schnoes, “A Chemical and Mechanistic View of Reaction Profiles in Laser Direct-Write Metallization in Metallo-Organic Films,” J. Appl. Phys. 60, 529, (1986)
[11] M. E. Gross, A. Appelbaum, P. K. Gallagher, “Laser Direct Write Metallization in Thin Palladium Acetate Films,” J. Appl. Phys. 61, 1628, (1987)
[12] J. Bohandy, B.F. Kim, F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60, 1538, (1986)
[13] J. A. Barron, P. Wu, H. D. Ladouceur, B. R. Ringeisen,“Biological Laser Printing : A Novel Technique for Creating Heterogeneous 3-dimensional Cell Patterns,” Biomedical Microdevices, 6, 139-147, (2004)
[14] J. A. Barron , R. Rosen,” Biological laser printing of genetically modified Escherichia coli for biosensor applications,” Biosensors and Bioelectronics, 20, 246–252, (2004)
[15] K. D. Kyrkisa, A. A. Andreadakia, D. G. Papazogloub and I. Zergiotia, “Direct transfer and microprinting of functional materials by laser-induced forward transfer,” Elsevier, Recent advances in laser processing of materials, Ch 7, 213-214, (2006)
[16] C. Dongsheng, L. Yi, L. Qinghua, Y. Jie, Z. Zikang ,” Selective silver seeding on laser modified polyimide for electroless copper plating,” Appl. Surf. Sci. 246, 167–173, (2004)
[17] G. A. Shafeev , P. Hoffmann,” Light-enhanced electroless Cu deposition on laser-treated polyimide surface,” Appl. Surf. Sci. 138–139, 455–460, (1999)
[18] K. Kordás , “Laser-assisted chemical liquid-phase deposition of metals for micro-and optoelectronics,” ISBN 951-42-6686-2, (2002)
[19] H.W. Lee, S. D. Allen , “High Deposition Rate Laser Direct Writing of Al on Si,” Appl. Phys. Lett. 58 (19), 13, (1991)
[20] H. Yokoyama, S. Kishida, and K. Washio,” Laser induced metal deposition from organometallic solution,” Appl. Phys. Lett. 44 (8), 15, (1984)
[21] K. Kordás, J. Remes, S. Leppävuori and L. Nánai, “Laser-assisted selective deposition of nickel patterns on porous silicon substrates”, Appl. Surf. Sci. 178, 93-97, (2001).
[22] K. Kordás , L. Nánai , G. Galbács , A. Uusimäki , S. Leppävuori , and K. Bali ,”Reaction Dynamics of CW Ar+ Laser-Induced Copper Direct Writing from Liquid Electrolyte on Polyimide Substrates,“ Appl. Surf. Sci. 158, 127-133, (2000).
[23] M. Wehner, F. Legewie, B. Theisen, and E. Beyer, “Direct Writing of Gold and Copper Lines from Solutions,” Appl. Surf. Sci. 106, 406-411, (1996)
[24] L. Mini, C. Giaconia, C. Arnone, “ Copper patterning on dielectrics by laser writing in liquid solution, ” Appl. Phys. Lett. ,64 (25), 3404-3406, (1994)
[25] Zs. Geretovszky, L. Kelemen, K. Bali, T. Szörényi, ” Kinetic model for scanning laser-induced deposition from the liquid phase, ” Appl. Surf. Sci. 86, 494-499, (1995)
[26] X. C. Wang, H. Y. Zheng, G. C. Lim, “Laser induced copper electroless plating on polyimide with Q-switch Nd:YAG laser,” Appl. Surf. Sci. 200, 165-171, (2002)
[27] L. Nánai, I. Hevesi, F. V. Bunkin, B. S. Luk’yanchuk, M. R. Brook, G. A. Shafeev, Daniel A. Jelski, Z. C. Wu, Thomas F. George, “ Laser-induced metal deposition on semiconductors from liquid electrolytes,” Appl. Phys. Lett. 54 (8), 736-738, (1989)
[28] K. Kordás, K. Bali, S. Leppävuori, A. Uusimäki, L. Nánai, “ Laser direct writing of copper on polyimide surfaces from solution, “ Appl. Surf. Sci. 158, 127, (2000)
[29] K. Kordás, J. Békési, R. Vajitai, L. Nánai, S. Leppävuori, A. Uusimäki, K. Bali, Thomas F. George, G. Galbács, F. Ignácz, P. Moilanen, “ Laser-assisted metal deposition from liquid-phase precursors on polymers, ” Appl. Surf. Sci. 172, 178-189, (2001)
[30] A. Manshina, A. Povolotskiy, T. Ivanova, A. Kurochkin, Yu. Tver’yanovich, D. Kim, M. Kim, S. C. Kwon, “ Laser-assisted metal deposition from CuSO4-based electrolyte solution, “ Laser Phys. Lett. 4, No.2, 163-167, (2007)
[31] A. A. Manshina, A. V. Povolotskiy, T. Yu. Ivanova, A. V. Kurochkin, Yu. S. Tver’yanovich, D. Kim, M. Kim, S. C. Kwon, “ Laser-induced copper deposition on the surface of an oxide glass from an electrolyte solution, “ Glass Physics and Chemistry, 33, No.3, 209-213, (2007)
[32] R. J. Kennedy,” The growth of iron oxide, nickel oxide and cobalt oxide thin films by laser ablation from metal targets,” IEEE Transactions on Magnetics, 31, No.6, (1995)
[33] M. Liu, X.Q. Wei, Z.G. Zhang, G. Sun, C.S. Chen, C.S. Xue, H.Z. Zhuang and B.Y. Man,” Effect of temperature on pulsed laser deposition of ZnO films,” Appl. Surf. Sci. 252, 4321–4326, (2006)
[34] X. M. Fan, J. S. Lian, Z. X. Guo, H. J. Lu,” Microstructure and photoluminescence properties of ZnO thin films grown by PLD on Si (1 1 1) substrates,” Appl. Sur. Sci. 239, 176–181, (2005)
[35] P. E. Dyer, M. Pervolaraki, T. Lippert,” Experimental studies and thermal modeling of 1064- and 532-nm Nd:YVO4 micro-laser ablation of polyimide,” Appl. Phys. A 80, 529–536, (2005)
[36] K. Kordás, K. Bali, S. Leppävuori, A. Uusimäki, L. Nánai,” Laser direct writing of palladium on polyimide surfaces from solution,” Appl. Sur. Sci. 152, 149–155, (1999)
[37] 達邁科技股份有限公司, 泛用型PI膜 (TH), http://www.taimide.com.tw/product_list.asp?MainType=13
[38] M. A. Green, M. J. Keevers,” Optical Properties of Intrinsic Silicon at 300K,” Research And Applications, Vol.3, 189-192, (1995)
[39] J. H. Yoo, O. V. Borisov, X. Mao, R. E. Russo,” Existence of Phase Explosion during Laser Ablation and Its Effects on Inductively Coupled Plasma-Mass Spectroscopy,” Anal. Chem. 73, 2288-2293, (2001)