研究生: |
李家暐 Lee, Chia-Wei |
---|---|
論文名稱: |
探討應用於雷射干涉重力波偵測器之以電漿輔助化學氣相沈積法製備於矽懸臂之氮化矽薄膜之材料特性與機械損耗 Study of the material properties and the mechanical loss of the silicon nitride films deposited by PECVD method on silicon cantilever for laser interference gravitational wave detector application |
指導教授: | 趙煦 |
口試委員: |
李正中
任貽均 徐進成 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 機械損耗 、矽懸臂 、氮化矽 、應力 、重複夾持誤差 |
外文關鍵詞: | mechanical loss, silicon cantilever, silicon nitride, stress, re-clamping error |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雷射干涉重力波偵測器組織(Laser Interferometer Gravitational-Wave Observatory, LIGO)以建置光學重力波偵測器為主要研究項目,其偵測儀器需要具備以光學損耗、機械損耗皆低的光學薄膜材料來製作共振腔之高反射鏡;機械損耗來源很多,而總體雜訊最低也就是量測系統最靈敏處之頻率範圍大約在100Hz左右,在此範圍內以高反射鏡光學薄膜材料本身之熱擾動造成的雜訊最為嚴重;本實驗室參與LIGO計畫,並以室溫下量測機械損耗之系統利用單晶矽懸臂振動及其衰減時間來量測、計算薄膜之機械損耗,再利用機械損耗換算出薄膜材料熱擾動大小,期望以低熱擾動的薄膜材料來提昇重力波觀測儀的靈敏度。
本研究分為兩大部分,其一為單晶矽懸臂基板完整製程,包含懸臂尺寸設計、光罩設計、KOH溶液濕蝕刻製程及製作過程所發生之基板缺陷情形、改善方式;
接著詳述以電漿輔助化學氣相沉積鍍製氮化矽光學薄膜之過程,以不同製程氣體流量所沉積之氮化矽薄膜為研究對象進行材料特性量測,包含個別之化學成分組成分析、光學性質(折射率、消散係數)、機械性質(楊氏係數、薄膜應力),最重要的是探討薄膜應力與機械損耗間的關係。由本實驗室所建置之常溫下量測機械損耗之系統測量氮化矽薄膜之機械損耗大約為10-4數量級,但應力值與機械損耗之關係並不顯著,原因可能為重複夾持誤差的影響,筆者將於第四章敘述重複夾持誤差造成的原因及數據討論,目前以增加量測次數的方式希望解決重複夾持誤差所造成的影響,加強機械損耗量測系統之準確度。
[1] I. W. Martin, “Studies of materials for use in future interferometric gravitational wave detectors ”, Ph.D thesis, University of Glasgow, pp.13-26 , 2009
[2] LIGO Scientific Collaboration, “Instrument science White Paper”, LIGO Doucument, LIGO-T1100309-v5, pp.7, 2011.
[3] H. B. Callen et al., “Irreversibility and generalized noise ”, Physical Review , Vol. 83, pp.34-40, 1951
[4] R. F. Greene et al., “On the formalism of thermodynamic fluctuation theory”, Physical Review , Vol. 83, pp.1231-1235, 1951
[5] H. B. Callen et al., “On a theorem of irreversible thermodynamics”, Physical Review , Vol.86 , pp.702-710, 1952
[6] Krzysztof Hejduk et al., “Dielectric coatings for infrared detectors”, Optica Applicata, Vol. XXXV, No. 3, 2005
[7] D. R. Southworth et al., “Stress and Silicon Nitride: A Crack in the Universal Dissipation of Glasses”, Physical Review Letters, Vol. 102, 225503, 2009
[8] Jiansheng Wu et al., “How stress can reduce dissipation in glasses", Physical Review B, Vol. 84, 174109, 2011
[9] K. D. Mackenzie et al., “Silicon nitride and silicon dioxide thin insulating films & other emerging dielectrics”, Vol. VIII, PV2005-01, pp.148-159, ElectroChemical Society, Pennington, NJ , 2005
[10] G. Gspan et al., “ Determination of local stress in PECVD nitride films”, Microelectronics Reliability, Vol. 30, Issue 5, pp. 911-913, 1990
[11] Xiangdong Xu et al., “Hard and relaxed a-SiNxHy films prepared by PECVD: Structure analysis and formation mechanism”, Applied Surface Science, Vol. 264 , pp.823– 831 , 2013
[12] Peter J. Hesketh et al., “Surface Free Energy Model of Silicon Anisotropic Etching”, Journal of Electrochemical Society, Vol. 140, No. 4, 1993
[13] P. A. Alvi et al., “A study on anisotropic etching of (100) silicon in aqueous KOH solution”, International Journal of Chemical Sciences, Vol. 6(3), pp.1168-1176, 2008
[14] 陳柏穎, “矽晶圓非等向性溼式蝕刻之特性研究”, 國立中山大學碩士論文, 2002
[15] Donald L. Smith et al., “Mechanism of SiNxHy Deposition from NH3-SiH4 plasma”, Journal of Electrochemical Society, Vol. 137, pp.614-623, 1990
[16] J. N. Chiang et al., “Mechanistic Considerations in the Plasma Deposition of silicon nitride film”, Journal of Electrochemical Society ,Vol. 137, pp.2222-2226, 1990
[17] L. Smith et al, Materials Research Society Symposium Proceedings, Vol. 165, 1990
[18] L. Vanzetti et al, “Correlation between silicon-nitride film stress and composition: XPS and SIMS analyses”, Surface and Interface Analysis, Vol. 38, Issue 4, pp.723-726, 2006
[19] Gregory T. A. Kovacs, “Micromachined Transducers Sourcebook”, McGraw-Hill Companies, pp.81-83, 2000
[20] Klaus K. Schuegraf, “Handbook of Thin-Film Deposition Processes and Techniques”, Principles, Methods, Equipment and Applications, Noyes Publication, pp.124-126, 1988
[21] M. Madou, “Fundamentals of microfabrication : The science of miniaturization”, Boca Raton, FL:CRC Press, 2002
[22] H. Xiao, 羅正忠, 張鼎張, “半導體製程技術導論”, 歐亞書局, 2005
[23] M. Ohring et al., Materials science of thin films: deposition and structure :Academic press, 2002
[24] Wright, D.N. et al., “Plasma-enhanced chemical vapour-deposited silicon nitride films; The effect of annealing on optical properties and etch rates”, Solar Energy Materials & Solar Cells, Vol. 92, pp. 1091-1098 , 2008
[25] D. Nečas et al., “Optical characterization of non-stoichiometric silicon nitride films”, Phys. Status Solidi (C), Vol. 5, Issue 5, pp.1320-1323, 2008
[26] Daniel Benoit et al., “Determination of silicon nitride film chemical composition to study hydrogen desorption mechanisms”, Thin Solid Films, Vol. 519, Issue 19, pp. 6550–6553, 2011
[27] Huang, H. et al., “Characteristics of low temperature PECVD silicon nitride for MEMS structural materials ”, International Journal of Modern Physics B, Vol. 20(25-27), pp. 3799-3804 , 2006
[28] Pierre Morin et al., “A comparison of the mechanical stability of silicon nitride films deposited with various techniques”, Applied Surface Science ,Vol. 260, pp.69- 72 , 2012
[29] J. H. Scofield , “Hartree-slater subshell photoionization cross-sections at 1254 and 1487 eV”, Journal of Electron Spectroscopy and Related Phenomena, Vol. 8, Issue 2, pp.129-l 37, 1976
[30] G. E. Jellison et al., “Parameterization of the optical functions of amorphous materials in the interband region”, Applied Physics Letters, Vol. 69, Issue 3 ,pp.371, 1996
[31] G.E. Jellison et al., “Spectroscopic ellipsometry characterization of thin-film silicon nitride”, Thin Solid Films , Vol. 313-314, pp.193-197, 1998
[32] Oliver W. C. et al., “Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials Research, Vol. 7, pp.1564-1580, 1992
[33] “Operational manual of Nano Indenter XP System” ,MTS company, USA
[34] A Stoffel et al., “LPCVD against PECVD for micromechanical applications” J. Micromech. Microeng., Vol. 6 ,Issue. 1 , pp.20-33, 1996
[35] 汪建民, “材料分析”, 國家圖書館, 2009
[36] G. Gerald Stoney, “The Tension of Metallic Films Deposited by Electrolysis”, Proceedings The Royal of Society A, Vol.82, pp.172-175, 1909
[37] 許育禛, “高密度電漿化學氣相沉積法製作低應力氮化矽薄膜於微機電應用之研究”, 國立成功大學, 碩士論文, 2002
[38] S. T. Thornton et al., “Classical dynamics of particles and systems”, Brooks Cole, fifth edition, pp. 109-121, 2003
[39] B. S. Berry et al., “Vibrating reed internal friction apparatus for films and foils”, IBM journal of research and development, Vol.19, pp.334, 1975
[40] R. M. Jones, “Mechanics of composite materials”, ch3.2, Philadelphia : Taylor & Francis, 1999,
[41] 歐政勳, “室溫下量測機械損耗之系統設置與量測熔融石英玻璃懸臂及單晶矽懸臂之初步量測分析”, 國立清華大學, 碩士論文, 2012
[42] S. Chao et al., “Mechanical loss of silicon nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) method”, LIGO Doucument, LVC meeting, LIGO-G1300171, 2013.
[43] R Flaminio et al., “A study of coating mechanical and optical losses in view of reducing mirror thermal noise in graviational wave detectors”, Classical and Quantum Gravity, Vol. 27 , 2010