簡易檢索 / 詳目顯示

研究生: 林奐昇
Huan-Sheng Lin
論文名稱: 多用戶正交分頻多工系統中具網路服務品質保證排程技術之跨層設計法
Cross-Layer Design for QoS-Guaranteed Scheduling in Multiuser OFDM Systems
指導教授: 王晉良
Chin-Liang Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 76
中文關鍵詞: 跨層設計排程網路服務品質適應性調變/編碼
外文關鍵詞: Corss-layer design, Scheduler, Quality-of-service (Qos), Adaptive modulation/coding (AMC)
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 行動全球互通微波接取 (Mobile WiMAX, Worldwide Interoperability for Microwave Access) 是一種多用戶正交分頻多工系統,也是一種無線寬頻技術,其可以用共同的寬頻無線接取技術來同時接取行動用戶和非行動用戶。在發展行動全球互通微波接取系統時,其中一個主要的挑戰就是要設計出一個有效率、可以處理系統中所有使用者的排程系統。一個實際針對行動WiMAX設計的排程系統,需要有下列條件:1. 可以同時滿足傳送即時封包 (real-time packets) 的使用者和傳送非即時封包 (non-real-time packets) 的使用者其網路服務品質 (QoS, Quality of Service)。2. 排程系統在做資源分配的時候可以同時考慮到行動使用者和非行動使用者的通道 (channel) 特性。為了這些目標,我們發展出利用跨層的概念來設計多使用者的排程機制,此跨層涵蓋了實體層和資料連結層。每位使用者再搭配我們提出的適應性調變/編碼 (AMC, Adaptive Modulation/ Coding) 演算法,此適應性調變演算法是針對所需要的封包錯誤率(PER, packet error rate)來設計的。在本論文中,我們將會介紹所提出的排程機制和適應性調變/編碼演算法。
    對於適應性調變/編碼演算法,我們推導出行動全球互通微波接取系統中在AWGN通道和Nakagami-m通道下封包錯誤率和訊雜比的近似數學模型。藉由此模型和所要求的封包錯誤率,可以得到各個調變模式的邊界值,進而可以由收到訊號的訊雜比和此邊界值結果來決定要用什麼調變模式。而此屬於實體層的結果會利用跨層來交換給資料連結層的排程器來提升系統的傳輸速率。
    對於排程器,會利用到標準中傳輸訊號框架 (frame) 長度是固定的特點,來預測每個訊號框架的傳輸起始時間為何時,如此就可以根據即時性的封包其可容忍延遲時間 (deadline) 以及子通道的頻率響應來預先安排屬於哪個框架和分配到哪些子通道。剩餘的資源就可分配給非即時性封包來傳輸。由電腦模擬指出,這樣的設計和傳統的排程器比較,的確可以讓即時性封包滿足網路服務品質中的可容忍時間延遲,也可以對非即時性封包提升傳輸速率。


    Mobile WiMAX (Worldwide Interoperability for Microwave Access), namely IEEE 802.16-2005, is a kind of multiuser OFDM systems that can support both mobile and fixed broadband wireless services. The main challenge in Mobile WiMAX is to design an efficient traffic scheduler for resource assignment to the entire users in the system. A practical scheduler for Mobile WiMAX should have the following essentials: 1) it can provide guaranteed quality-of-service (QoS) for real-time and non-real-time packets without violating fairness; 2) it should take the channel properties of both fixed and mobile broadband networks into account when allocating resource. To meet these two requirements, we purpose a cross-layer design for the Mobile WiMAX scheduler based on joint considerations of the physical and medium access control (MAC) layers, with each user employing adaptive modulation/coding (AMC) based on the desired packet error rate.
    For the AMC algorithm, we derive new closed-form relations between the packet error rate (PER) and the received signal-to-noise ration (SNR) in the Mobile WiMAX system over AWGN and Nakagami-m fading channels. With the derived PER formulas and the target PER requirement, we can obtain the boundary SNR values for changing modulation/coding modes. The mode changing information is then cross-layer utilized in the design of the purposed QoS-guaranteed scheduler to maximize the system throughput.
    The proposed scheduler, referred to as Pre-Processing Scheduler, aims at providing the most appropriate treatments to data connections based on their QoS requirements as well as reducing processing needs at the beginning of transmission of each time frame. By exploiting the feature of the Mobile WiMAX standard that the duration of each TDD frame is fixed, the proposed scheduler can predict the starting instant of each frame and then pre-assign appropriate frames and subchannels for transmitting real-time packets based on their transmission deadlines and the corresponding channel responses. After this, the remaining resources are allocated to non-real-time packets. Computer simulation results show that the proposed scheduler can grantee QoS for real-time packets and attain a higher throughput for non-real-time packets, as compared to the conventional scheduling approach.

    Abstract i Contents iii List of Tables vi List of Figures vii Chapter 1 Introduction 1 1.1 Problems and Solutions 2 1.1.1 Adaptive Modulation/Coding Algorithm Based on Desired Packet Error Rate 3 1.1.2 Cross–Layer Design for QoS-Guaranteed Scheduling 4 1.2 Thesis Outline 6 Chapter 2 IEEE 802.16 Broadband Access Systems 7 2.1 Physical Layer Description 7 2.1.1 OFDMA Symbol Structure and Scalable OFDMA 7 2.1.2 Sub-Channelization 9 2.1.3 TDD Frame Structure 12 2.1.4 Modulation and Coding Mode 13 2.1.5 Others 15 2.2 Media Access Control Layer Description 16 2.2.1 MAC Mechanism 16 2.2.2 Scheduling Service 17 Chapter 3 Adaptive Modulation/Coding Algorithm Based on Desired Packet Error Rate 21 3.1 System Model 21 3.1.1 The Whole System Description 21 3.1.2 The Proposed Scheduling System 24 3.1.3 Channel Model Induced by AMC 27 3.2 Adaptive Modulation/Coding Algorithm 27 3.2.1 Problem 27 3.2.2 Formulation 28 3.3 Simulation Results 35 Chapter 4 Cross-Layer Design for QoS-Guaranteed Scheduling 37 4.1 Introduction of Scheduling and QoS Support 37 4.2 Channel Models for the IEEE 802.16 System 41 4.3 Subcarrier Allocation Strategies 43 4.3.1 For Non-Real-Time: Maximum C/I Subcarrier Allocation 44 4.3.2 For Real-Time: Max-Delay-Utility Subcarrier Allocation 46 4.4 Motivation 47 4.4.1 The Property of TDD Frame 47 4.4.2 Channel Characteristic 48 4.4.3 The Property of Subchannel 52 4.5 The Proposed Scheduler: Pre-Processing Scheduler 57 4.5.1 Scheduler Description 57 4.5.2 Operational Procedure 59 4.6 Performance Evaluation 65 4.6.1 Simulation Scenario 65 4.6.2 Simulation Results 66 Chapter 5 Conclusions 71 References 73

    [1] I. Koffman and V. Roman, “Broadband wireless access solutions based on OFDM access in IEEE 802.16,” IEEE Commun. Mag., Apr. 2002.

    [2] IEEE Std 802.16-2004, “IEEE Standard for Local and Metropolitan Area Networks – Part 16: Air Interface for Fixed Broadband Access Systems,” Oct. 2004.

    [3] R. Nogueroles, M. Bossert, A. Donder, and V. Zyablov, “Performance of a random OFDMA system for mobile communications,” Proc. Int. Zurich Seminar on Broadband Commun., pp. 37–43, 1998.

    [4] IEEE Std 802.16e, “IEEE Standard for Local and Metropolitan Area Networks – Part 16: Air Interface for Fixed and Mobile Broadband Access Systems,” Feb. 2005.

    [5] G. Nair, J. Chou, T. Madejski, K. Perycz, P. Putzolu, and J. Sydir “IEEE 802.16 medium access control and service provisioning”, Intel Tech. J., vol. 08, Aug. 2004.

    [6] M. –S. Alouini and A. J. Goldsmith, “Adaptive modulation over Nakagami fading channels,” J. Wireless Commun., vol. 13, no. 1-2, pp. 119 – 143, May 2000.

    [7] K. J. Hole, H. Holm, and G. E. Oien, “Adaptive multidimensional coded modulation over flat fading channels,” IEEE J. Select. Areas Commun., vol. 18, no. 7, pp. 1153–1158, July 2000.

    [8] S. Shakkottai, T. S. Rappaport, P. C. Karlsson, P. C. Karlsson, and T. Sonera, “Cross-layer design for wireless networks,” IEEE Commun. Mag., pp. 74–80, Oct. 2003.

    [9] H. Fattah and C. Leung, “An overview of scheduling algorithms in wireless multimedia networks,” IEEE Wireless Commun., pp. 76–83, Oct. 2002.

    [10] R. A. Berry and E. M. Reb, “Cross-layer wireless resource allocation,” IEEE Signal Proc. Mag., pp. 59–68, Sept. 2004.

    [11] K. Wongthavarawat and A. Ganz, “Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems,” Int. J. Commun. Syst., vol. 16, pp. 81–96, 2003.

    [12] L.-C Wang and W.-J. Lin, “Throughput and fairness enhancement for OFDMA broadband wireless access systems using the maximum C/I scheduling,” in Proc. 2004 IEEE Veh. Tech. Conf., 2004.

    [13] Q. Liu, S. Zhou, and G. B. Giannakis, “Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links.” IEEE Trans. Wireless Commun., vol. 3, no. 5, Sept. 2004.

    [14] ——, “Queuing with adaptive modulation and coding over wireless link: Cross-layer analysis and design,” IEEE Trans. Wireless Commun., vol. 4, no. 3, May 2005.

    [15] ——, “Cross-layer Scheduling with prescribed QoS guarantees in adaptive wireless networks,” IEEE Trans. Wireless Commun., vol. 23, no. 5, May 2005.

    [16] X. Qiu and K. Chawla, “On the performance of adaptive modulation in cellular systems,” IEEE Trans. Wireless Commun., vol. 47, no. 6, June 1999.

    [17] C. Ciccontti, L. Lenzini, and E. Mingozzi, “Quality of service support in IEEE 802.16 networks,” IEEE Network, Apr. 2006

    [18] S. Lu and V. Bharghvan, “Fair scheduling in wireless packet networks”. IEEE/ACM Tran. Networking, vol. 7, no. 4, pp. 473 – 489, 1999.

    [19] Y. Cao, VOK. Li, “Scheduling algorithms in broadband wireless networks,” Proc. IEEE, vol. 89, no. 1, pp. 76 – 86, Jan. 2001.

    [20] H. Yagoobi, “Scalable OFDMA physical layer in IEEE 802.16 WirelessMAN,” Intel Tech. J., vol 08, Aug. 2004.

    [21] A. E. Xhafa, S. Kangude, and X. Lu, “MAC performance of IEEE 802.16e,” IEEE Trans. Wireless Commun. Fall 2005.
    [22] C. Eklund, R. B. Marks, K. L. Stanwood, and S. Wang, “IEEE Standard 802.16: A technical overview of the WirelessMAN air interface for broadband wireless access,” IEEE Commun. Mag., vol. 40, no. 6, pp. 98–107 June 2004.

    [23] IEEE 802.16, Broadband Wireless Access Working Group, “Channel models for fixed wireless applications,” Jan. 2001.

    [24] “Guidelines for the evaluation of radio transmission technologies for IMT-2000," Recommendation ITU-R M.1225, 1997.

    [25] 3GPP TR 25.996 V6.1.0, “Spatial channel model for Multiple Input Multiple Output (MIMO) simulations,” Sept. 2003.

    [26] G. Song, Y. G. Li, L. J. Cimini, and H. Zheng, “Joint channel-aware and queue-aware data scheduling in multiple shared wireless channels,” in Proc. 2004 Wireless Commun. and Networking Conf., vol. 3, Mar. 2004, pp. 1939–1944 .

    [27] C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Select Areas Commun., vol. 17, no. 10, Oct. 1999.

    [28] T. Park, O. –S. Shin, and K. B. E. Lee, “Proportional fair scheduling for wireless communication with multiple transmit and receive antennas,” in Proc. 2003 IEEE Veh. Technol. Conf., Oct. 2003.

    [29] X. Liu, E. Chong, N. Shroff, “Opportunistic transmission scheduling with resource-sharing constraints in wireless networks,” IEEE J. Select Areas Commun., vol. 19, pp. 2053–2064, Oct. 2001.

    [30] A. Federgruen and H. Groenevelt, “The greedy procedure for resource allocation problems: necessary and sufficient conditions for optimality,” Oper. Res., vol. 34, pp. 909–918, Nov. –Dec. 1986.
    [31] A. J. Goldsmith, P. P. Varaiya, “Capacity of fading channels with channel side information,” IEEE Trans. Inform. Theory, vol. 43, no. 6, Nov. 1997.

    [32] G. J. Foschini and J. Salz, “Digital communications over fading radio channels,” Bell Syst. Tech. J., vol. 62, part 1, pp. 429–456, Feb.1983.

    [33] A. Leon-Garcia and I. Widjaja, Communication Networks: Fundamental concepts and key architectures, second edition., McGraw-Hill, 2004

    [34] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, 1992.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE