簡易檢索 / 詳目顯示

研究生: 張佐民
Chang, Joe-Ming
論文名稱: 以接合單一顆儲電之鐵氟龍奈米球的掃瞄探針進行電場量測
Direct measurement of electrostatic fields using single Teflon nanoparticle attached to AFM Tip
指導教授: 曾繁根
Tseng, Fan-Gang
錢景常
Chieng, Chin-Chang
口試委員: 曾繁根
Tseng, Fan-Gang
王玉麟
Wang, Yah-Lin
黃英碩
Hwang, Ing-Shouh
陳福榮
Chen, Fu-Rong
院繼祖
Yuan, Chi-Tsu
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 75
中文關鍵詞: 原子力顯微鏡靜電作用力奈米球駐極體靜電力顯微鏡
外文關鍵詞: AFM, Electrostatic force, Nano particle, electret, EFM
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中, 我們設計並開發出一種創新的掃描探針顯微鏡(Scanning probe microscope, SPM) 探針,用以直接量測電性元件的電場作用力大小(庫倫力)。本技術是以一絕緣體探針在其尖端接合一顆帶固定同性電量奈米球後,此帶電奈米球可視為一點電荷,作用於帶電奈米球的作用力可以直接被絕緣體探針的懸臂樑量測出,其值就為所欲量測的電場作用力大小。
    我們以氮化矽材質的原子力顯微鏡探針的探針尖端接合210 nm 的鐵氟龍駐極體奈米球,再以接觸式充電法對針尖上的奈米球充電,並進一步的對此帶電探針的儲元特性如帶電時間、電量穩定性皆進行確認與檢測。本研究並開發出一新穎的氮氣乾燥系統以利進行電場作用力的量測研究。
    最後我們以此探針量測以20 nm 鈦(Ti)金屬作為黏著層,30 nm鍍金(Au)層作為電極的平板電容邊緣的電場作為量測測試。本技術在橫向(X-axis)與縱向(Z-axis)的空間解析度各為 250 nm 與 100 nm,可被量測的最小力量質為 50 pN.


    This study designed and fabricated a novel microscopy probe for the direct measurement of the electrostatic field (mainly Coulombic force) of electrical samples. The probe is based in the principle of using an insulating cantilever for the attachment of a charged nanoparticle, such that the probe acts as a point charge applicable in the detection of electrostatic force.
    We attached a single 210 nm Teflon nanoparticle (sTNP) to the vertex of a silicon nitride (Si3N4) atomic force microscope (AFM) tip and applied charge via contact electrification. We then verified the characteristics of the charged sTNP tip, such as charge duration and consistency, and fabricated an N2 drying system to facilitate the measurement of electrostatic field.
    To demonstrate the efficacy of electrostatic force detection, we used the charged sTNP tip to measure the electrostatic field adjacent to a parallel plate condenser using 30 nm gold /20 nm Titanium as electrodes. The proposed technique provides resolution of 250 nm / 100 nm along the X / Z-axes and a measured minimum electrostatic force accurate to within 50 pN.

    中文摘要 I ABSTRACT II 誌謝 III TABLE OF CONTENTS V LIST OF FIGURES IX CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 INTRODUCTION 1 1.3 RESEARCH OBJECTIVE 3 CHAPTER 2 BACKGROUND AND LITERATURE 4 2.1 PRINCIPLES OF AFM 4 2.1.1 Piezoelectric scanner 6 2.1.2 Laser diode/photodetector system 7 2.1.3 Feedback control 8 2.1.4 Cantilever probe 9 2.1.5 Tip cleaning 11 2.1.6 AFM imaging mode 12 2.1.7 Types of AFM scanning data 14 2.1.8 Force spectroscopy 16 2.1.9 Force mapping 18 2.2 SPM IN ELECTRICAL MODE 20 2.3 ATTACHING A SINGLE PARTICLE TO THE AFM TIP 24 2.4 APPLICATION OF THE ELECTRETS IN AFM 29 CHAPTER 3 EXPERIMENTAL SETUP 37 3.1 JPK AFM NANOWIZARD SYSTEM 37 3.2 N2 DRYING SYSTEM 39 3.3 FABRICATION OF SINGLE TEFLON NANOPARTICLE TIP 44 3.3.1 Etching reflective metal layer coated on Si3N4 tip 45 3.3.2 Flattening the AFM tip 45 3.3.3 Cleaning process of the AFM tip 45 3.3.4 Attaching single particle on the AFM tip 46 3.4 CHARGING AFM TIP 48 3.5 PARALLEL PLATE CONDENSER 50 3.6 MEASUREMENT OF THE ELECTROSTATIC FIELDS 51 3.7 SIMULATION OF THE ELECTROSTATIC FIELD 53 CHAPTER 4 RESULTS AND DISCUSSION 54 4.1 VERIFICATION OF THE CHARACTERISTICS OF THE CHARGED STNP TIP 54 4.1.1 Using f-d curve to verify the charge deposition on the sTNP tip 54 4.1.2 The consistent of the charged sTNP tip 56 4.1.3 The duration time of the charged sTNP tip under N2 condition 57 4.2 USING CHARGED STNP TIP TO MEASURE THE ELECTROSTATIC FIELD ADJACENT TO A PARALLEL PLATE CONDENSER 59 4.2.1 Measurement of the electrostatic force (FE) using charged sTNP tip 59 4.2.2 Measurement results of the electrostatic field 62 4.2.3 The differences between the experimental result and Ansoft Maxwell simulation 65 CHAPTER 5 CONCLUSION 66 APPENDIX: PUBLICATION 68 JOURNAL PAPERS 68 CONFERENCE PAPERS 68 PATENTS 70 REFERENCES 71

    1. Berger R, Butt HJ, Retschke MB, Weber SAL: Electrical Modes in Scanning Probe Microscopy. Macromol Rapid Commun 2009, 30:1167-1178.
    2. Martin Y, Williams CC, H. K. Wickramasinghe HK: Atomic force microscope-force mapping and profiling on a sub 100-A scale. J Appl Phys 1987, 61:4723-4729.
    3. Stern JE, Terris BD, Mamin HJ, Rugar D: Deposition and imaging of localized charge on insulator surfaces using a force microscope. Appl Phys Lett 1988, 53:2717-2719.
    4. Terris BD, Sterna JE, Rugar D, Mamin HJ: Localized charge force microscopy. J Vac Sci Technol 1990, A8:374-377.
    5. Sakora A: The influence of the electrical field on structures dimension measurement in electrostatic force microscopy mode. OPT APPL, 4:933-941
    6. Bonnell DA: Electrostatic and magnetic force microscopy. In Scanning Probe Microscopy and Spectroscopy. New York: Wiley; 2001: 207-210.
    7. Nonnenmacher M, O’Boyle MP, Wickramasinghe HK: Kelvin probe force microscopy. Appl Phys Lett 1991, 58:2921-2923.
    8. Palermo V, Palma M, Samori P: Electronic Characterization of Organic Thin Films by Kelvin Probe Force Microscopy. Adv Mater 2006,18:145-164.
    9. Dunaevskiy MS, Alekseev PA, Girard P, Lahderanta E, Lashkul A: Kelvin probe force gradient microscopy of charge dissipation in nano thin dielectric layers. Journal of applied physics 2011, 110:084304
    10. Binnig B and Quate C F: Atomic force microscopy. Phys. Rev. Lett.1986 , 56:930-933
    11. Jenke MG, Santschi C, Hoffmann P: Two-dimensional electrostatic force field measurements with simultaneous topography measurement on embedded interdigitated nanoelectrodes using a force distance curve based method. Appl Phys Lett 2008, 92:063113
    12. Harris Benson; Chapter 23 The Electric Field. University physics. New York: John Wily & Sons, Inc; 1995
    13. Feng JQ, Hays DA: Relative importance of electrostatic forces on powder particles. Powder Technology 2003,135–136: 65– 75
    14. Kwek. JW, Vakararelski IU, Ng WK, Heng JYY, Tan RBH: Novel parallel plate condenser for single particle electrostatic force measurements in atomic force microscope. Colloids and Surfaces A: Physicochem Eng Aspects 2011, 385:206-212
    15. Terris BD, Stern JE, Rugar D, Mamin HJ: Contact Electrification Using Force Microscopy. Phys Rev Lett 1989, 63:2669-2672.
    16. Mesquida P, Stemmer A: Attaching Silica Nanoparticles from Suspension onto Surface Charge Patterns Generated by a Conductive Atomic Force Microscope Tip. Adv Mater 2001, 13:1395-1398.
    17. Mesquida P, Knapp HF, Stemmer A: Charge writing on the nanometre scale in a
    fluorocarbon film. Surf. Interface Anal 2002, 33:159-162
    18. Huang SH, Wang WJ, Chang CS, Hwu YK, Tseng GF, Kai JJ and Chen FR: The fabrication and application of Zernike electrostatic phase plate. Journal of Electron Microscioy 2006, 55:273-280
    19. Rosenbluth MJ, Lam WA and Fletcher DA: Force Microscopy of Nonadherent Cells: A Comparison of Leukemia Cell Deformability. Biophysical journal 2006, 90: 2994-3003
    20. Digital instruments Veeco Metrology Group: MultiMode STM instruction Manual. Version 4.31 ce
    21. JPK instruments: The NanoWizard AFM Handbook. Version 1.3, 2005
    22. Hinterdorfer et al. : Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. PNAS 1996, 93: 3477-3481
    23. JPK instruments: The NanoWizard AFM User manual. SPM Software Release 2.3, 2006
    24. 曾賢德, 果尚志: 奈米電性之掃描探針量測技術. 物理雙月刊 2003, 25:632-648
    25. Svelana G, Golovko DS and Bonaccurso E: Cantilever contribution to the total electrostatic force measured with the atomic microscope. Meas. Sci. Technol 2010, 21: 025502
    26. Gomez-Monivas S, Froufe LS, Carminati R, Greffet JJ and JSaenz JJ: Tip-shape effects on electrostatic force microscopy resolution, Nanotechnology 2011, 12:496
    27. Ducker WA, Denden TJ, Pashley RM: Measurement of Forces in Liquids Using a Force Microscope. Langmuir 1992, 8:1831
    28. Gan Y: invited Review article: A review of techniques for attaching micro and nanoparticles to a probe’s tip for surface force and near-field optical measurements. Rev. Sci. Instrument 2007, 78:081101
    29. Gan Y: Microscopy Today 2005, 13:48
    30. Ong K and Sokolov I: Attachment of nanoparticles to the AFM tips for direct measurements of interaction between a single nanoparticle and surfaces. J COLLOID INTERF SCI 2007, 310:385-390
    31. Kim T, Sung M, Kim TH and Hong S: Robust Single-Nanoparticle probe for Contact-Mode Analysis and Dip-Pen Nanolithography. Small 2008, 8:1072-1075
    32. Vakarelski U and Higashitani K : Single-Nanoparticle Tips for Scanning probe Microscopy. Langmuir 2006, 22: 2931-2934
    33. Sessler GM : Electrets. New York : Springer-Verlag 1980
    34. Kestelman V, Pinchuk L and Goldade V: Electrets in engineering. London : Kluwer Academic Publisher 2000
    35. Giacometti JA, Fedosov S and Costa MM: Corona Charging Polymers: Recent Advances on Constant Current Charging. Brazilian Journal of Physics 1999, 29: 269-279
    36. Giacometti JA and Oliveria ON: Corona Charging of polymers. IEEE Transaction on Electrical Insulation 1992, 27: 924-943
    37. Sessler GM and West JE: Charging of polymer foils with monoenergetic low-energy electron beams. Applied Physics Letters 1970, 17: 507-509
    38. Gross B, Sessler GM and West JE: Location of charge centroid in electron-beam-charged polymer film. Journal of Applied Physics 1977, 48:4303-4306
    39. Gross B, Gerhard-Multhaupt R, Berraissoul A and Sessler GM: Electron-beam poling of piezoelectric polymer electrets. Journal of Applied Physics 1987, 62:1429-1432
    40. Hutter JL, Bechhoefer J: Calibration of atomic force microscope tips, Rev Sci Instrum 1993, 64:1868-1873
    41. Matsuyama T, Ohtsuka M, Yamamoto H : Measurement of Force Curve due to Electrostatic Charge on a Single Particle using Atomic Force Microscope. KONA Powder and particle Journal 2008, 26:238-245.
    42. Jones R, Pollock HM, Cleaver JAS, Hodges CS: Adhesion Forces between Glass and Silicon Surfaces in Air Studied by AFM: Effects of Relative Humidity, Particle Size, Roughness, and Surface Treatment. Langmuir 2002, 18:8045-8055
    43. ANSYS Maxwell [ www.ansys.com/Products/Simulation+Technology/Electromagnetics/Electromechanical/ANSYS+Maxwell ]
    44. Israelachvili JN: Contrasts between intermolecular, interparticle and intersurface forces. In Intermolecular and surface forces. San Diego: Academic; 152-155.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE