研究生: |
曾郁智 Tseng, Yu-Chih |
---|---|
論文名稱: |
氧化亞銅 /二氧化鈦異質接面光觸媒上的二氧化碳還原反應研究 Reduction of CO2 with H2O on Cu2O/TiO2 Heterojunction Photocatalysts |
指導教授: |
楊耀文
Yang, Yaw-Wen |
口試委員: |
黃暄益
Huang, Hsuan-Yi 李紫原 Lee, Chi-Young 羅夢凡 Luo, Meng-Fan |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 光催化 、室壓光電子能譜 、二氧化碳還原反應 |
外文關鍵詞: | photocatalysis, Ambient pressure x-ray photoelectron spectroscopy, Carbon dioxide photoreduction reaction |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自工業革命以來,煤炭、石油等不可再生能源使用量日益增長,隨之而來的還有大量的二氧化碳排放量,這些影響所帶來的威脅已令人類無法忽視。科學家開始著手研究減少二氧化碳排放以及開發其他的綠色能源,將這兩點串起的反應即為二氧化碳還原反應。此反應可將二氧化碳反應成甲烷、甲醛、一氧化碳等可再進行利用的產物,而利用光催化驅動此反應更令其具有環保價值。
本實驗合成出立方體及菱形十二面體兩種形狀的氧化亞銅,並於外層覆蓋上二氧化鈦形成半導體異質接面,並利用XPS、SEM、EDS等方式進行鑑定,確定二氧化鈦覆蓋薄層在氧化亞銅上以及晶型未受到破壞。接著利用此氧化亞銅-二氧化鈦奈米粒子作為光催化觸媒,並使用國家同步輻射中心BL24A於2017年架設的室壓X光光電子能譜 (Ambient Pressure X-ray Photoelectron Spectroscopy, APXPS) 實驗站進行臨場二氧化碳的紫外光光催化還原反應,觀察照光前後圖譜變化,並進行兩種催化劑的比較。
在二氧化碳光催化還原反應中,我們觀察到菱型十二面體形狀的氧化亞銅-二氧化鈦催化劑上出現了碳氫鍵譜峰的大幅度上升,而在立方體的樣品上則無類似的變化。我們進一步使用程序升溫反應進行質譜儀的測量,結果亦觀察到菱型十二面體的樣品甲醇相關訊號產生;同樣的實驗於立方體樣品則無相同結果。
為比較兩者活性差異,我們測量並繪製兩種催化劑的異質接面能階圖,結果發現菱形十二面體樣品之價帶差距(Valence band offset, VBO)要大於立方體樣品相對應數値,我們認為此差距會帶給受光激發的電子較大的驅動力使其容易傳遞至能階較低的二氧化鈦價帶。因此菱型十二面體較容易在照光後將電子傳遞至外層的二氧化鈦,幫助催化反應進行。此外亦有可能因異質接面產生時的能帶彎曲 (band bending)使氧化亞銅價帶下彎過多,造成電子傳遞能力下降。
Since the industrial revolution, the extensive usage of fossil fuel has resulted in a continuous increase of atmospheric concentration of carbon dioxide, generating a global temperature rise with a catastrophic effect on global weather. Therefore, the sequestration of carbon dioxide and the conversion of carbon dioxide into reusable carbon feedstock have received a world wide attention of scientific community. Photocatalytic reduction of carbon dioxide, capable of turning carbon dioxide into useful commodities such as methane, methanol, carbon monoxide, etc., offers a particularly appealing advantage by tapping the solar radiation as the energy source of reactions.
In this thesis, we report a photoreduction study of carbon dioxide on semiconducting, core-shell heterojunctions fabricated with nanostructured materials of cuprous oxide (core) and titanium oxide (shell). Two cuprous oxide structures are adopted for the anticipated difference in photoreductivity: the cubic structure terminated with (100) face, and the rhombic dodecahedron (r.d.) terminated with (110) face. The techniques such as secondary electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) are employed to characterize the heterojunction. Additionally, a rather unique, operando research technique, i.e. ambient pressure XPS (APXPS), is also used to track the change of reaction species on the photocatalyst surfaces. APXPS C 1s spectra show the Cu2O(r.d.)-TiO2 is more reactive than Cu2O(cube)-TiO2, as evidenced by a larger production of carbon species such as formate, carbonyl, carbon dioxide, aliphatic carbons on the surface. After prolong photocatalytic reactions, the chemical identity of accumulated surface species evolved into gas phase can be revealed with a quadrupole mass spectrometer by running the so-called temperature programmed reaction spectroscopy (TPRS) experiments. The production of methane and methanol at ~400 K is clearly noted.
The energy diagram relevant to the performance of photocatalysis is also obtained by XPS. The heterojunction of Cu2O(cube)-TiO2 has smaller valence and conduction band offsets than its counterpart of Cu2O(r.d.)-TiO2. The larger conduction band offset of Cu2O(r.d.)-TiO2 facilitates a better charge carrier separation, with electrons and holes ended up being more accumulated on TiO2 and Cu2O, respectively. It is argued that the larger band offset found for Cu2O(r.d.)-TiO2 plays an important role in enhancing its photoreduction capability.
1. https://www.enecho.meti.go.jp/about/whitepaper/2017pdf/whitepaper2017pdf_2_2.pdf.
2. https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions.
3. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37-38.
4. Kraeutler, B.; Bard, A. J., Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates. J. Am. Chem. Soc. 1978, 100, 4317-4318.
5. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T., Light-induced amphiphilic surfaces. Nature 1997, 388, 431-432.
6. Frank, S. N.; Bard, A. J., Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J. Am. Chem. Soc. 1977, 99, 303-304.
7. Henderson, M. A., A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 2011, 66, 185-297.
8. Levinson, R.; Berdahl, P.; Akbari, H., Solar spectral optical properties of pigments—Part II: survey of common colorants. Sol. Energy Mater. Sol. Cells 2005, 89, 351-389.
9. Wang, B.; Kerr, L. L., Stability of CdS-coated TiO2 solar cells. J. Solid State Electrochem. 2011, 16, 1091-1097.
10. Janczarek, M.; Kowalska, E., On the Origin of Enhanced Photocatalytic Activity of Copper-Modified Titania in the Oxidative Reaction Systems. Catalysts 2017, 7.
11. Yang, W.; Li, J.; Wang, Y.; Zhu, F.; Shi, W.; Wan, F.; Xu, D., A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells. Chem. Commun. (Camb.) 2011, 47, 1809-11.
12. Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998, 395, 583-585.
13. Lakadamyali, F.; Reynal, A.; Kato, M.; Durrant, J. R.; Reisner, E., Electron transfer in dye-sensitised semiconductors modified with molecular cobalt catalysts: photoreduction of aqueous protons. Chemistry 2012, 18, 15464-75.
14. Kaur, R.; Pal, B., Plasmonic coinage metal–TiO2 hybrid nanocatalysts for highly efficient photocatalytic oxidation under sunlight irradiation. New J. Chem. 2015, 39, 5966-5976.
15. Zhu, H.; Ke, X.; Yang, X.; Sarina, S.; Liu, H., Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angew. Chem. Int. Ed. Engl. 2010, 49, 9657-61.
16. Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K., Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solids 2002, 63, 1909-1920.
17. Zhang, Q.; Li, Y.; Ackerman, E. A.; Gajdardziska-Josifovska, M.; Li, H., Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels. Applied Catalysis A: General 2011, 400, 195-202.
18. Li, Y.; Wang, W.-N.; Zhan, Z.; Woo, M.-H.; Wu, C.-Y.; Biswas, P., Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Applied Catalysis B: Environmental 2010, 100, 386-392.
19. Kohno, Y.; Hayashi, H.; Takenaka, S.; Tanaka, T.; Funabiki, T.; Yoshida, S., Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. Journal of Photochemistry and Photobiology A: Chemistry 1999, 126, 117-123.
20. Zhao, C.; Krall, A.; Zhao, H.; Zhang, Q.; Li, Y., Ultrasonic spray pyrolysis synthesis of Ag/TiO2 nanocomposite photocatalysts for simultaneous H2 production and CO2 reduction. Int. J. Hydrogen Energy 2012, 37, 9967-9976.
21. Zhang, Q.-H.; Han, W.-D.; Hong, Y.-J.; Yu, J.-G., Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal. Today 2009, 148, 335-340.
22. Tseng, I. H.; Chang, W.-C.; Wu, J. C. S., Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental 2002, 37, 37-48.
23. Fujii, H.; Ohtaki, M.; Eguchi, K.; Arai, H., Photocatalytic activities of CdS crystallites embedded in TiO2 gel as a stable semiconducting matrix. J. Mater. Sci. Lett. 1997, 16, 1086-1088.
24. Jia, F.; Yao, Z.; Jiang, Z., Solvothermal synthesis ZnS–In2S3–Ag2S solid solution coupled with TiO2−xSx nanotubes film for photocatalytic hydrogen production. Int. J. Hydrogen Energy 2012, 37, 3048-3055.
25. Brahimi, R.; Bessekhouad, Y.; Bouguelia, A.; Trari, M., CuAlO2/TiO2 heterojunction applied to visible light H2 production. Journal of Photochemistry and Photobiology A: Chemistry 2007, 186, 242-247.
26. Xu, X.; Gao, Z.; Cui, Z.; Liang, Y.; Li, Z.; Zhu, S.; Yang, X.; Ma, J., Synthesis of Cu2O Octadecahedron/TiO2 Quantum Dot Heterojunctions with High Visible Light Photocatalytic Activity and High Stability. ACS Appl. Mater. Interfaces 2016, 8, 91-101.
27. Huang, W. C.; Lyu, L. M.; Yang, Y. C.; Huang, M. H., Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 1261-7.
28. Huang, J.-Y.; Madasu, M.; Huang, M. H., Modified Semiconductor Band Diagrams Constructed from Optical Characterization of Size-Tunable Cu2O Cubes, Octahedra, and Rhombic Dodecahedra. The Journal of Physical Chemistry C 2018, 122, 13027-13033.
29. Huang, M. H.; Naresh, G.; Chen, H. S., Facet-Dependent Electrical, Photocatalytic, and Optical Properties of Semiconductor Crystals and Their Implications for Applications. ACS Appl. Mater. Interfaces 2018, 10, 4-15.
30. Zhang, Y.; Deng, B.; Zhang, T.; Gao, D.; Xu, A.-W., Shape Effects of Cu2O Polyhedral Microcrystals on Photocatalytic Activity. The Journal of Physical Chemistry C 2010, 114, 5073-5079.
31. Liu, L.; Yang, W.; Sun, W.; Li, Q.; Shang, J. K., Creation of Cu2O@TiO2 Composite Photocatalysts with p–n Heterojunctions Formed on Exposed Cu2O Facets, Their Energy Band Alignment Study, and Their Enhanced Photocatalytic Activity under Illumination with Visible Light. ACS Appl. Mater. Interfaces 2015, 7, 1465-1476.
32. Tan, S. S.; Zou, L.; Hu, E., Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catal. Today 2006, 115, 269-273.
33. Hou, W.; Hung, W. H.; Pavaskar, P.; Goeppert, A.; Aykol, M.; Cronin, S. B., Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions. ACS Catalysis 2011, 1, 929-936.
34. Zhao, Z.; Fan, J.; Xie, M.; Wang, Z., Photo-catalytic reduction of carbon dioxide with in-situ synthesized CoPc/TiO2 under visible light irradiation. Journal of Cleaner Production 2009, 17, 1025-1029.
35. Tseng, I. H.; Wu, J. C. S.; Chou, H.-Y., Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J. Catal. 2004, 221, 432-440.
36. Xia, X.-H.; Jia, Z.-J.; Yu, Y.; Liang, Y.; Wang, Z.; Ma, L.-L., Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon 2007, 45, 717-721.
37. Aguirre, M. E.; Zhou, R.; Eugene, A. J.; Guzman, M. I.; Grela, M. A., Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion. Applied Catalysis B: Environmental 2017, 217, 485-493.
38. http://www.nsrrc.org.tw/chinese/lightsource.aspx.
39. Tseng, P. C.; Chen, C. C.; Dann, T. E.; Chung, S. C.; Chen, C. T.; Tsang, K. L., A unique high-performance wide-range (10-1500 eV) spherical grating monochromator beamline. J Synchrotron Radiat 1998, 5, 723-5.
40. https://xpssimplified.com/whatisxps.php.
41. http://www.ilp.physik.uni-essen.de/wucher/tatf98/tatf98.html.
42. Travnikova, O.; Børve, K. J.; Patanen, M.; Söderström, J.; Miron, C.; Sæthre, L. J.; Mårtensson, N.; Svensson, S., The ESCA molecule—Historical remarks and new results. J. Electron Spectrosc. Relat. Phenom. 2012, 185, 191-197.
43. Seah, M. P.; Dench, W. A., Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1979, 1, 2-11.
44. Grass, M. E.; Karlsson, P. G.; Aksoy, F.; Lundqvist, M.; Wannberg, B.; Mun, B. S.; Hussain, Z.; Liu, Z., New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2. Rev. Sci. Instrum. 2010, 81, 053106.
45. Frenken, J.; Groot, I., Operando Research in Heterogeneous Catalysis. Springer: 2017.
46. Starr, D. E.; Liu, Z.; Havecker, M.; Knop-Gericke, A.; Bluhm, H., Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem. Soc. Rev. 2013, 42, 5833-57.
47. Stöhr, J., NEXAFS Spectroscopy. Springer: 1992.
48. https://www.thermofisher.com/tw/zt/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/overview-mass-spectrometry.html.
49. http://www.materialsnet.com.tw/ad/adimages/aaaddd/mclm100/download/equipment/em/fe-sem/fe-sem005.pdf.
50. https://www.nanoimages.com/sem-technology-overview/.
51. https://blog.phenom-world.com/edx-analysis-scanning-electron-microscope-sem.
52. https://en.wikipedia.org/wiki/Electron_microscope.
53. Yeo, B.-E.; Cho, Y.-S.; Huh, Y.-D., Evolution of the morphology of Cu2O microcrystals: cube to 50-facet polyhedron through beveled cube and rhombicuboctahedron. CrystEngComm 2017, 19, 1627-1632.
54. Huang, L.; Peng, F.; Ohuchi, F. S., “In situ” XPS study of band structures at Cu2O/TiO2 heterojunctions interface. Surf. Sci. 2009, 603, 2825-2834.
55. Hamlyn, R. C. E.; Mahapatra, M.; Grinter, D. C.; Xu, F.; Luo, S.; Palomino, R. M.; Kattel, S.; Waluyo, I.; Liu, P.; Stacchiola, D. J.; Senanayake, S. D.; Rodriguez, J. A., Imaging the ordering of a weakly adsorbed two-dimensional condensate: ambient-pressure microscopy and spectroscopy of CO2 molecules on rutile TiO2(110). Phys. Chem. Chem. Phys. 2018, 20, 13122-13126.
56. Jiang, P.; Prendergast, D.; Borondics, F.; Porsgaard, S.; Giovanetti, L.; Pach, E.; Newberg, J.; Bluhm, H.; Besenbacher, F.; Salmeron, M., Experimental and theoretical investigation of the electronic structure of Cu2O and CuO thin films on Cu(110) using x-ray photoelectron and absorption spectroscopy. J. Chem. Phys. 2013, 138, 024704.
57. Porsgaard, S.; Jiang, P.; Borondics, F.; Wendt, S.; Liu, Z.; Bluhm, H.; Besenbacher, F.; Salmeron, M., Charge state of gold nanoparticles supported on titania under oxygen pressure. Angew. Chem. Int. Ed. Engl. 2011, 50, 2266-9.
58. Baer, D. R.; Xiong-Skiba, P.; Shultz, A. N.; Wang, L. Q.; Englehard, M. H., Comparison of TiO2(110) Surfaces by XPS: Effects of UV Exposure, Electron Beam and Ion Beam Damage. Surface Science Spectra 1998, 5, 193-202.
59. Feng, T.; Vohs, J. M., TPD–TGA and Calorimetric Study of the Partial Oxidation of Methanol on TiO2-Supported Vanadium Oxide. J. Catal. 2002, 208, 301-309.
60. Kim, K. S.; Barteau, M., Reactions of methanol on TiO2(001) single crystal surfaces. 1989; Vol. 223, p 13-32.
61. Wong, G. S.; Kragten, D. D.; Vohs, J. M., Temperature-programmed desorption study of the oxidation of methanol to formaldehyde on TiO2(110)-supported vanadia monolayers. 2000; Vol. 452.
62. https://www.nist.gov/.
63. Naresh, G.; Hsieh, P.-L.; Meena, V.; Lee, S.-K.; Chiu, Y.-H.; Madasu, M.; Lee, A.-T.; Tsai, H.-Y.; Lai, T.-H.; Hsu, Y.-J.; Lo, Y.-C.; Huang, M. H., Facet-Dependent Photocatalytic Behaviors of ZnS-Decorated Cu2O Polyhedra Arising from Tunable Interfacial Band Alignment. ACS Appl. Mater. Interfaces 2019, 11, 3582-3589.
64. Wu, S.-C.; Tan, C.-S.; Huang, M. H., Strong Facet Effects on Interfacial Charge Transfer Revealed through the Examination of Photocatalytic Activities of Various Cu2O–ZnO Heterostructures. Adv. Funct. Mater. 2017, 27, 1604635.
65. Anandan, S.; Ikuma, Y.; Niwa, K., An Overview of Semi-Conductor Photocatalysis: Modification of TiO<sub>2</sub> Nanomaterials. Solid State Phenomena 2010, 162, 239-260.