簡易檢索 / 詳目顯示

研究生: 王建中
Wang, Jian-Jung
論文名稱: 氮化鎵高電子移動速度電晶體關鍵製程之研究
Study on Critical Processes for GaN HEMTs
指導教授: 黃智方
Huang, Chih-Fang
口試委員: 李傳英
吳添立
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 68
中文關鍵詞: 氮化鎵氮化鋁鎵高電子移動速度電晶體
外文關鍵詞: GaN, AlGaN, HEMT
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文中,測試矽基板上再成長氮化鋁鎵/氮化鎵異質結構,發現未摻雜的氮化鎵通道層在現階段的成長環境下會成為元件的漏電路徑。
    於矽基板上的p-GaN/AlGaN/GaN磊晶層製作HEMT元件,這部分的研究著重於解決關鍵製程上的問題,如p型歐姆接觸及p型氮化鎵蝕刻,在控制良好的製程下製作出HEMTs及LEHEMTs,其設計為Lg=3 um、Lgs=3 um以及Lgd=7 um,兩者的臨界電壓(threshold voltage)皆為-1.0 V,閘極電壓為1 V時定義其導通電阻(on-resistance, Ron),LEHEMT為7.26 mΩ*cm2,HEMT為6.14 mΩ*cm2,其中LEHEMT擁有最大電流密度303.1 mA/mm,HEMT最大電流密度為114.8 mA/mm,由於LEHEMT汲極端有內建p型氮化鎵,其擁有2.0 V的導通電壓(trun-on voltage)。
    在發光特性上,LEHEMT的發光峰值365.52 nm為近紫外光波段,半高寬(Full width at half maximum, FWHM)為8.2 nm意指此元件有良好的材料特性,發光波長也和氮化鎵發光二極體一樣隨溫度上升右移,此現象稱為紅移現象(red shift)。


    In this study, the regrowth of AlGaN/GaN heteroepitaxy on the Si substrate were tested. We observed that the undoped-GaN channel layer with the current growth conditions is a critical leakage path for the device.
    HEMT devices were fabricated with p-GaN /AlGaN/GaN epitaxial layers on Si substrate. This part of study focuses on solving the problems of the critical processes, for example, p-type ohmic contact and the etching of p-GaN. After controlling the critical processes, HEMTs and LEHEMTs were fabricated with Lg=3um, Lgs=3um, and Lgd=7um, both showing a threshold voltage (Vds=15V drain current criterion of 10 μA /mm) of -1.0V. Ron,sp , defined at a gate voltage of 1 V, is 7.263 mΩ*cm2 for the LEHEMT and 6.142 mΩ*cm2 for the HEMT. The maximum current density of the LEHEMT is 303.1 mA/mm, and the HEMT device is 114.8 mA/mm. With the built-in p-GaN on the drain, a 2.0 V turn-on voltage is needed for LEHEMT.
    For the optical properties, the wavelength of the emitted light is 365.52 nm near ultraviolet light in the LEHEMT. The FWHM (Full width at half maximum) is 8.2 nm indicating the good material prop-erties of the device. The wavelength increases with the rise of the temperature which is usually observed in GaN LED and called red shift. 

    中文摘要..................................I Abstract.................................II 目錄....................................III 表目錄....................................V 圖目錄...................................VI 第一章 序論............................1 1.1前言...................................1 1.2文獻回顧...............................3 1.2.1磊晶成長.............................3 1.2.2單片積體化元件........................6 1.3研究方向簡介與論文架構..................14 1.3.1研究方向簡介.........................14 1.3.2論文架構.............................14 第二章 MBE異質磊晶及電性量測............15 2.1氮化鋁鎵/氮化鎵異質結構介紹.............15 2.1.1自發性極化效應.......................16 2.1.2壓電性極化效應.......................18 2.2基板選擇...............................19 2.3分子束磊晶系統成長......................20 2.3.1分子束磊晶成長過程....................20 2.3.2磊晶試片電性量測......................22 2.3.3磊晶試片載子濃度比較...................27 第三章 P型氮化鎵歐姆接觸及蝕刻製程........31 3.1P型氮化鎵歐姆接觸.......................31 3.1.1P型氮化鎵活化.........................32 3.1.2P型氮化鎵歐姆接觸金屬選擇與熱退火.......33 3.1.3表面處理..............................36 3.2氮化鎵蝕刻..............................38 第四章 元件製作流程......................40 4.1氮化鋁鎵/氮化鎵 LEHEMT 製程步驟..........40 4.2有機溶劑清洗晶片及p型氮化鎵活化...........40 4.3蝕刻對準記號(Mask1).....................41 4.4汲極P型氮化鎵蝕刻(Mask2).................42 4.5表面處理................................44 4.6源極金屬(Mask3).........................44 4.7元件隔離(Mask4).........................45 4.8汲極金屬(Mask5).........................46 4.9閘極金屬及襯墊金屬(Mask6)................47 第五章 元件量測結果分析..................48 5.1臨界電壓與蝕刻深度關係...................48 5.2電流-電壓量測分析........................50 5.2.1TLM量測...............................50 5.2.2不同汲極結構電性量測...................52 5.3發光特性量測分析.........................54 5.3.1發光波長範圍...........................54 5.3.2輸入電流與輸出光強度關係................55 5.3.3光譜與溫度關係.........................57 5.3.4光學量測...............................59 第六章 結論與未來工作.....................63 參考文獻....................................64

    [1]B. J. Baliga, "Power semiconductor device figure of merit for high-frequency applications," Electron Device Letters, vol. 10, no. 10, pp. 455-457, Oct 1989.
    [2]R. F. Davis, J. W. Palmoue and J. A. Edmond, "A review of the status of diamond and silicon carbide devices for high-power, -temperature, and -frequency applications," Electron Devices Meeting, vol. 90, pp. 785-788, Dec 1990.
    [3]A. Y. Cho and K. Y. Cheng, "Growth of extremely uniform layers by rotating substrate holder with molecular beam epitaxy for applications to electro‐optic and microwave devices," Appl. Phys. Lett., vol. 38, no. 360, Dec 1981.
    [4]L. Shen, T. Palacios, C. Poblenz, A. Corrion, A. Chakraborty, N. Fichtenbaum, S. Keller, S. P. Denbaars, J. S. Speck and U. K. Mishra, "Unpassivated high power deeply recessed GaN HEMTs with fluorine-plasma surface treatment," Electron Device Letters, vol. 27, no. 4, pp. 214-216, Apr 2006.
    [5]T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S. P. DenBaars and U. K. Mishra, "AlGaN/GaN high electron mobility transistors with InGaN back-barriers," Electron Device Letters, vol. 27, no. 1, pp. 13-15, Jan 2006.
    [6]F. Schwierz and O. Ambacher, "Recent advances in GaN HEMT development," in Electron Devices for Microwave and Optoelectronic Applications, EDMO, 2003.
    [7]G. Koblmuller, P. Pongratz, R. Averbeck and H. Riechert, “Nucleation phenomena during molecular beam epitaxy of GaN observed by line-of-sight quadrupole mass spectrometry," Physica Status Solidi, vol. 194, no. 2, pp. 515-519, Oct 2002.
    [8]S. Fernández-Garrido, G. Koblmüller, E. Calleja and J. S. Speck, "In situ GaN decomposition analysis by quadrupole mass spectrometry and reflection high-energy electron diffraction," Journal of Applied Physics, vol. 104, no. 3, pp. 0335411-0335416, Jul 2008.
    [9]B. Heying, R. Averbeck, L. F. Chen, E. Haus, H. Riechert and J. S. Speck, "Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy," Journal of Applied Physics, vol. 88, no. 4, pp. 1855-1860, Aug 2000.
    [10]F. Semond, Y. Cordier, N. Grandjean, F. Natali, B. Damilano, S. Vézian and J. Massies, "Molecular beam epitaxy of group-III nitrides on silicon substrates: growth, properties and device applications," Physica Status Solidi, vol. 188, no. 2, pp. 501-510, Nov 2001.
    [11]M. Asif Khan, J. N. Kuznia, J. M. Van Hove, N. Pan and J. Carter, "Observation of a twodimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-AlxGa1−xN heterojunctions," vol. 60, no. 24, pp. 3027-3029, Mar 1992.
    [12]M. Asif Khan, M. Shur and Q. Chen, "High transconductance AIGaN/GaN optoelectronic heterostructure field effect transistor," Electronics Letters, vol. 31, no. 24, pp. 2130-2131, Nov 1995.
    [13]Y. F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars and U. K. Mishra, "Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors," Applied Physics Letters, vol. 69, no. 10, pp. 1438-1440, Sep 1996.
    [14]L. Shen, S. Heikman, B. Moran, R. Coffie, N.-Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars and U. K. Mishra, "AlGaN/AlN/GaN high-power microwave HEMT," Electron Devices Letters, vol. 22, no. 10, pp. 457-459, Oct 2001.
    [15]S. Yoshida, H. Ishii, J. Li, D. Wang and M. Ichikawa, "A high-power AlGaN/GaN heterojunction field-effect transistor," Solid State Electronics, vol. 47, no. 3, pp. 589-592, Mar 2003.
    [16]Y. Cai, Y. Zhou, K. J. Chen and K. M. Lau, "High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment," Electron Devices Letters, vol. 26, no. 7, pp. 435-437, Jul 2005.
    [17]O. Wada, T. Sanada and T. Sakurai, "Monolithic integration of an AlGaAs/GaAs DH LED with a GaAs FET driver," Electron Device Letters, vol. 3, no. 10, pp. 305-307, Oct 1982.
    [18]C. H. Hong, C. T. Kim and Y. S. Kwon, "A vertical integration of GaAs/GaAlAs LED and vertical FET with embedded Schottky electrodes," Japanese Journal of Applied Physics, vol. 29, no. 12, pp. 2427-2429, Dec 1990.
    [19]M. Feng, N. Holonyak Jr. and W. Hafez, "Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors," Applied Physics Letters, vol. 84, no. 1, pp. 151-153, Jan 2004.
    [20]M. Feng, N. Holonyak, G. Walter and R. Chan, "Room temperature continuous wave operation of a heterojunction bipolar transistor laser," Applied Physics Letters, vol. 87, no. 13, pp. 1311031-1311033, Sep 2005.
    [21]F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis and N. T. Pelekanos, "Monolithic integration of nitride-based transistor with Light Emitting Diode for sensing applications," Microelectronic Engineering, vol. 90, pp. 33-36, 2012.
    [22]Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek Jr. and T. P. Chow, "Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate," Applied Physics Letters, vol. 102, no. 19, pp. 1921071-1921073, 2013.
    [23]Y. J. Lee, Z. P. Yang, P. G. Chen, Y. A. Hsieh, Y. C. Yao, M. H. Liao, M. H. Lee, M. T. Wang and J. M. Hwang, "Monolithic integration of GaN-based lightemitting diodes and metal-oxide-semiconductor field-effect transistors," Optics Express, vol. 22, no. S6, pp. A1589-A1595, Oct 2014.
    [24]C. Liu, Z. Liu, T. Huang, J. Ma and K. M. Lau, "Improved breakdown characteristics of monolithically integrated III-nitride HEMT–LED devices using carbon doping," Journal of Crystal Growth, vol. 414, pp. 243-247, Mar 2015.
    [25]C. Liu, Y. Cai, X. Zou and K. M. Lau, "Low-leakage high-breakdown laterally integrated HEMT-LED via n-GaN electrode," Photonics Technology Letters, vol. 28, no. 10, pp. 1130-1132, May 2016.
    [26]F. Sacconi, A. D. Carlo, P. Lugli and H. Morkoç, "Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs," Transactions on Electron Devices, vol. 48, no. 3, pp. 450-457, Mar 2001.
    [27]I. P. Smorchkova, L. Chen, T. Mates, L. Shen, S. Heikman, B. Moran, S. Keller, S. P. DenBaars, J. S. Speck and U. K. Mishra, "AlN/GaN and (Al,Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy," Journal of Applied Physics, vol. 90, no. 10, pp. 5196-5201, Nov 2001.
    [28]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann and K. Chu, "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 85, no. 6, pp. 3222-3233, Mar 1999.
    [29]O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell and M. Stutzmann, "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 87, no. 1, pp. 334-344, Mar 2000.
    [30]H. P. Maruska and J. J. Tietjen, "The preparation and properties of vapor-deposited single-crystal-line GaN," Applied Physics Letters, vol. 15, no. 10, pp. 327-329, Nov 1969.
    [31]Y. Y. Wong, Y. S. Chiu, T. T. Luong, T. M. Lin, Y. T. Ho, Y. C. Lin and E. Y. Chang, "Growth and fabrication of AlGaN/GaN HEMT on SiC substrate," in International Conference on Semiconductor Electronics, pp. 729-732, Sep 2012.
    [32]J. K. Kim and J. L. Lee, "Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment," Applied Physics Letters, vol. 73, no. 20, pp. 2953-2955, Nov 1998.
    [33]J. D. Hwang and G. H. Yang, "Activation of Mg-doped P-GaN by using two-step annealing," Applied Surface Science, vol. 253, no. 10, pp. 4694-4697, Mar 2007.
    [34]J. Yang, D. Zhao, D. Jiang, P. Chen, J. Zhu, Z. Liu, L. Le, X. He, X. Li, Y. T. Zhang and G. T. Du, "Influence of hydrogen impurities on p-type resistivity in Mg-doped GaN films," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 33, no. 2, pp. 0215051-0215054, Mar 2015.
    [35]A. C. Schmitz, A. T. Ping, M. A. Khan, Q. Chen, J. W. Yang and I. Adesida, "Schottky barrier properties of various metals on n-type GaN," Semiconductor Science and Technology, vol. 11, no. 10, pp. 1464-1467, 1996.
    [36]J. K. Kim and J. L. Lee, "Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment," Applied Physics Letters, vol. 73, no. 20, pp. 2953-2955, Nov 1998.
    [37]H. K. Cho, T. Hossain, J. W. Bae and I. Adesida, "Characterization of Pd/Ni/Au ohmic contacts on p-GaN," Solid-State Electronics, vol. 49, no. 5, pp. 774-778, May 2005.
    [38]J. S. Jang, I. S. Chang, H. K. Kim, T. Y. Seong, S. Lee and S. J. Park, "Low-resistance Pt/Ni/Au ohmic contacts to p-type GaN," Applied Physics Letters, vol. 74, no. 1, pp. 70-72, Jan 1999.
    [39]H. W. Jang, S. Y. Kim and J. L. Lee, "Mechanism for Ohmic contact formation of oxidized Ni/Au on p-type GaN," Journal of Applied Physics, vol. 94, no. 3, pp. 1748-1752, Aug 2003.
    [40]J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen and J. J. Kai, "Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films," Journal of Applied Physics, vol. 86, no. 8, pp. 4491-4497, Oct 1999.
    [41]J. L. Lee and J. K. Kim, "Ohmic Contact Formation Mechanism of Pd Nonalloyed Contacts on p-Type GaN," Journal of The Electrochemical Society, vol. 74, no. 16, pp. 2297-2302, Apr 2000.
    [42]N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin and H. X. Jiang, "Temperature and compositional dependence of the energy band gap of AlGaN alloys," Applied Physics Letters, vol. 87, no. 24, pp. 2421041-2421043, Dec 2005.
    [43]C. Huh, W. J. Schaff, L. F. Eastman and S. J. Park, "Temperature dependence of performance of InGaN/GaN MQW LEDs with different Indium compositions," Electron Devices Letters, vol. 25, no. 2, pp. 61-63, Feb 2004.

    QR CODE