簡易檢索 / 詳目顯示

研究生: 陳孟羲
Chen, Meng-Hsi
論文名稱: 從賽局理論探討具惡意中繼站之合作式網路
Cooperative Networks in the Presence of Malicious Relays: A Game Theoretic Study
指導教授: 洪樂文
Hong, Yao-Win
口試委員: 葉丙成
蔡育仁
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 32
中文關鍵詞: 賽局理論合作式網路惡意中繼站
外文關鍵詞: Game theory, Cooperative network, Malicious relay
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 合作式中繼技術是指信源(source)將所傳送的訊息藉由許多合作夥伴中繼轉傳給目的端(destination),並且可利用多使用者無線系統中所擁有的空間多樣性增益(spatial diversity gains)。在此論文中我們檢驗了合作式網路(cooperative network)中同時存在多合作式中繼站(relay)以及多惡意(malicious)中繼站的情境,並利用賽局理論(game theory)來分別探討這兩種中繼站的最佳行為。為了探討這類議題,我們針對解碼後再傳輸(decode-and-forward)以及放大後再傳輸(amplify-and-forward)這兩種系統分別將所探討的問題公式化為對應的零和賽局(zero-sum game)。接著我們在中繼站有其各自的功率限制之下藉由驗證賽局中的納許均衡(Nash equilibrium)來決定每個中繼站的最佳策略。在解碼後再傳輸的系統中,我們提出了在瑞利衰弱通道(Rayleigh fading channel)中,惡意中繼站的最佳策略是使用最大功率傳送獨立的高斯(Gaussian)訊號,至於合作式中繼站的最佳策略則是獨自將解出的信源訊息重新編碼為高斯訊號後傳送至目的端,不同中繼站之間的互相合作是不必要的。在放大後再傳輸的系統中,我們證明了當網路中只存在一個合作式中繼站時,惡意中繼站無法藉由偷聽信源所傳送的訊息來獲得增益並且應該在兩個傳輸階段都傳送獨立的高斯雜訊去分別干擾合作式中繼站以及目的端的訊號接收,而合作式中繼站的最佳策略則是永遠用最大功率將所收到的訊號放大後傳給目的端,並且在此系統中我們也證明了傳送高斯訊號是信源的最佳策略。我們透過數值模擬來驗證所得到的結論。


    Cooperative relaying refers to a technique that allows the source to transmit its messages to the
    destination via the relaying of multiple cooperative partners and, in this way, exploits the spatial
    diversity gains inherent in multiuser wireless systems. In this work, we examine cooperative networks
    with both cooperative and malicious relays and determine the optimal behavior for both
    kinds of relays using a game-theoretic approach. To study these issues, we formulate the problems
    into zero-sum games for both decode-and-forward (DF) and amplify-and-forward (AF) systems.
    Then, we determine the optimal relay strategies by identifying the Nash equilibrium of these problems
    under individual power constraints. In the DF case, we show that, with Rayleigh fading, the
    optimal strategy for malicious relays is to transmit independent Gaussian noise using full power
    at each relay and the optimal strategy for cooperative relays is to independently re-encode the
    source’s message into Gaussian signals and forward them to the destination. Inter-cooperation
    among relays is not necessary. In the AF case, we prove, for the case with only one cooperative
    relay, that malicious relays do not gain by overhearing the source’s message and, thus, should
    transmit Gaussian noise in both phases to corrupt the reception at both the cooperative relay and
    the destination. The optimal strategy for the cooperative relay in this case is to amplify and forward
    the received signal with full power at each relay. In this case, we also show that Gaussian signaling
    at the source is optimal. The results are verified through numerical simulations.

    Abstract Contents 1 Introduction 1 2 System Model 5 2.1 Cooperative Networks with DF Relays . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Cooperative Networks with AF Relays . . . . . . . . . . . . . . . . . . . . . . . 7 3 Optimal Strategies for Cooperative and Malicious Relays in the DF case 9 3.1 Zero-Sum Game Formulation for the DF Case . . . . . . . . . . . . . . . . . . . . 9 3.2 Optimal Relay Strategies under Individual Power Constraints . . . . . . . . . . . . 10 4 Optimal Strategies for Cooperative and Malicious Relays in the AF case 16 4.1 Zero-Sum Game Formulation for the AF Case . . . . . . . . . . . . . . . . . . . . 16 4.2 Optimal Relay Strategies under Individual Power Constraints . . . . . . . . . . . . 17 5 Simulation Results 25 6 Conclusion 29

    [1] J. N. Laneman, D. N. C. Tse, and G.W.Wornell, “Cooperative diversity in wireless networks:
    Efficient protocols and outage behavior,” IEEE Transactions on Information Theory, vol. 50,
    no. 12, pp. 3062–3080, 2004.
    [2] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity. Part I. System description,”
    IEEE Transactions on Communications, vol. 51, no. 11, pp. 1927–1938, 2003.
    [3] R. Mudumbai, J. Hespanha, U. Madhow, and G. Barriac, “Distributed transmit beamforming
    using feedback control,” IEEE Transactions on Information Theory, vol. 56, no. 1, pp. 411–426, 2010.
    [4] Y. Mao and M. Wu, “Tracing malicious relays in cooperative wireless communications,”
    IEEE Transactions on Information Forensics and Security, vol. 2, no. 2, pp. 198–212, 2007.
    [5] S. Dehnie and N. Memon, “Detection of misbehavior in cooperative diversity,” in in Proceedings
    of IEEE Military Communications Conference (MILCOM) , 2008.
    [6] I. E. Telatar, “Capacity of Multi-antenna Gaussian Channels,” European Transactions on
    Telecommunications, vol. 10, pp. 585–589, 1999.
    [7] A. Kashyap, T. Basar, and R. Srikant, “Correlated Jamming on MIMO Gaussian Fading
    Channels,” IEEE Transactions on Information Theory, vol. 50, pp. 2119–2123, 2004.
    [8] S. Shafiee and S. Ulukus, “Mutual Information Games in Multiuser ChannelsWith Correlated
    Jamming,” IEEE Transactions on Information Theory, vol. 55, pp. 4598–4607, 2009.
    [9] T.Wang and G. B. Giannakis, “Mutual information jammer-relay games,” IEEE Transactions
    on Information Forensics and Security, vol. 3, no. 2, pp. 290–303, 2008.
    [10] M. Yuksel, X. Liu, and E. Erkip, “A secure communication game with a relay helping the
    eavesdropper,” in Proceedings of IEEE Information Theory Workshop, 2009.
    [11] A. Mukherjee and A. L. Swindlehurst, “Equilibrium outcomes of dynamicgames in MIMO
    channels with active eavesdroppers,” in Proceedings of IEEE International Conference on Communications (ICC), 2010.
    [12] M. J. Osborne and A. Rubinstein, A course in game theory. The MIT press, 1994.
    [13] W. Yu and T. Lan, “Transmitter optimization for the multi-antenna downlink with per-antenna
    power constraints,” IEEE Transactions on Signal Processing, vol. 55, no. 6, pp. 2646–2660,2007.
    [14] M. Vu, “MISO capacity with per-antenna power constraint,” IEEE Transactions on Communications,
    vol. 59, no. 5, pp. 1268 – 1274, 2011.
    [15] S. Karlin, Mathematical Methods and Theory in Games, Programming and Economics, 1959.
    [16] I. C. Abou-Faycal, M. D. Trott, and S. Shamai, “The Capacity of Discrete-Time Memoryless
    Rayleigh-Fading Channels,” IEEE Transactions on Information Theory, vol. 47, pp. 1290–1301, 2001.
    [17] Y. H. Kim and A. Lapidoth, “On the log determinant of noncentral Wishart matrices,” in in
    Proceedings of IEEE International Symposium on Information Theory, 2003.
    [18] T. W. Anderson, “The integral of a symmetric unimodal function over a symmetric convex
    set and some probability inequalities,” in Proceedings of the American Mathematical Society,1955.
    [19] T. Cover and J. Thomas, Elements of information theory. NewYork:Wiley, 1991.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE