研究生: |
陳威有 Wei-Yu Chen |
---|---|
論文名稱: |
磁控濺鍍三元鎳磷鉻合金薄膜之微觀結構、微硬度及熱行為分析 Thermal Behavior, Microstructure and Microhardness of Ternary Ni-P-Cr Coating by RF Magnetron Sputtering Process |
指導教授: |
杜正恭
Jenq-Gong Duh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 英文 |
論文頁數: | 86 |
中文關鍵詞: | 磁控濺鍍 、鎳磷鉻薄膜 、微硬度 、熱穩定性 、熱循環測試 |
外文關鍵詞: | magnetron sputter, Ni-P-Cr coating, microhardness, thermal stability, thermal cycle test |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無電鍍鎳(EN)膜具有許多優異特性,因而在工業界常廣泛應用於表面改質。經適當之熱處理後,無電鍍鎳磷膜層會因鎳磷化合物的析出而強化。然而,過度的熱處理會使膜層中晶粒成長過大而導致硬度下降。因之,提高鎳磷膜層的結晶溫度使其能在更高溫的環使用境中具有足夠、甚至更高的強度,將是一關鍵的技術發展。本研究利用第三元添加於二元鎳磷膜層中使其成為三元鎳磷基膜,藉此探討第三元之添加對鎳磷基薄膜的熱穩定性、機械性質及表面特性之影響。
利用磁控濺鍍技術,成功地鍍製出三元鎳磷鉻薄膜,經過適當的熱處理,其最高硬度可以達到1500HK,相較於一般傳統的二元Ni-P系統有明顯的提升。為了更精確的探討鉻在鎳磷基三元薄膜的結晶行為影響,可以藉由DSC的分析得知NiP的析出溫度會因為第三元的添加,而由原本的380C(Ni-P)往高延緩到450C。同時,對於最高硬度的生成溫度也由原本沒有添加鉻的380°C提升為500°C,熱穩定性的提升亦由此得證。經過微觀結構及相鑑定分析,顯示三元鎳磷鉻薄膜經處理後會相轉變為Ni3P析出以及Ni-Cr固溶合金基地兩相。由此實驗中建構出一鎳磷基薄膜的強化理論:Ni本身的微小尺寸的強化效果以及Ni-P化合物析出強化,最後再加上第三元元素(鉻)會在Ni基地中行程固溶強化。除了長時間的熱處理評估,本實驗亦設計了在400°C以及450°C的短時間的熱循環測試其硬度值分別為1200 HK 和1300HK,其析出強化相Ni3P都尚未達到完全結晶狀態。
以磁控濺鍍所製備之三元鎳磷基薄膜其結晶行為以及機械性質表現會受到第三元元素的的種類以及含量影響。而本實驗所選用的鉻添加定二元鎳磷系統中,不管在熱穩定以及機械性質都有顯著的提升。
Binary Ni-P and ternary Ni-P-Cr alloy coatings were fabricated by the RF magnetron sputtering technique with dual targets of electroless nickel alloy as well as an additional element metal. The as-deposited Ni-P and Ni-P-Cr coating exhibited amorphous structure. The thermal property of coating was investigated by the annealing test for 4 hours and also by cycling test for 30 minutes in N2 atmosphere at 400 and 450C. The related mechanical properties were evaluated by Knoop microhardness test, and the measured microhardness was employed to evaluate the thermal stability of the binary and ternary alloy. The microhardness was 1250HK and 1380HK for Ni-P alloys at 400C and ternary Ni-P-Cr at 450C, respectively, after 4 hours annealing. For cycling test over 8 times cycles at 400 □C, the microhardness of Ni-P-Cr deposit was 1200 HK, in which full recrystallization of Ni3P precipitation was not yet completed. To evaluate the influence of Cr doping in Ni-P deposit, the differential scanning calorimeter (DSC) analysis was employed to characterize the temperature of phase transformation in the Ni-P-based coatings, including binary Ni-P, ternary Ni-P-Cr and Ni-P-W. Crystallization behavior in binary and ternary Ni-P-based coatings was quite distinct due to the addition of Cr and W. Microhardness test indicated that the sputtered Ni-P-Cr and Ni-P-W coatings exhibited superior hardness and excellent thermal stability than the Ni-P coating. In addition, chromium exhibited compatible thermal characteristic with the tungsten for the ternary Ni-P-based system. Strengthening mechanism in sputtered Ni-P-Cr and Ni-P-W deposits would also be discussed.
[1] M. Ratzker, D.S. Lashmore, K.W. Pratt, Plat. Surf. Finish. (1986) 74.
[2] S.F. Luo, E.M. Ma, P.X. Li, J. Vac. Sci. Technol. A 4 (6) (1986) 2862.
[3] M. Cherkaoui, A. Srhiri, E. Chassaing, Plating Surf. Finish. November (1992) 68
[4] C.Y. Lee, K.L. Lin, Thin Solid Films 239 (1994) 93.
[5] S. Armyanov, J.Georgieva, D. Tachev, E. Valova, N. Nyagolova, S. Mehta, D. Leibman, A. Ruffini, Electrochem. Solid-State Lett. 2 (7) (1999) 323.
[6] B.W. Zhang, W.Y. Hu, Q.L. Zhang, X.Y. Qu, Mater. Characterization 37 (1996) 119.
[7] Z. Song, X.H. Bao, M. Muhler, Appl. Surf. Sci. 148 (1999) 241.
[8] I. Koiwa, M. Usuda, K. Yamada, T. Osaka, J. Electrochem. Soc. 135 (1998) 718.
[9] M. Schlesinger, X. Meng, J. Electrochem. Soc. 137 (6) (1990) 1858.
[10] P.J. Kelly, R.D. Arnell, Vac. 56 (2000) 159.
[11] A. Matthews, Vac.65 (2002) 237.
[12] F.B. Wu, Y.I. Chen, P.J. Peng, Y.Y. Tsai, J.G. Duh, Surf. Coat. Technol. 150 (2002) 232.
[13] Y.C. Chang, J.G. Duh, Y.I. Chen, Surf. Coat. Technol. 139 (2001) 233-243.
[14] N. Krasteva, V. Fotty, and S. Armyanov, “Thermal Stability of Ni-Cu-P Amorphous Alloys”, J. Electrochem. Soc., Vol. 141, No. 10, October (1994) 2864-2867.
[15] S. Armyanov, and O. Steen, “Auger Electron Spectroscopy Element Profiles and Interface with Substrates of Electroless Deposited Ternary Alloys”, J. Electrochem. Soc., 143 (1996) 3692-3698.
[16] N. Krasteva, S. Armyanov, J. Georgieva, N. Avramova, and V. Fotty, J. Electron. Mater., 24 (1995) 941.
[17] S.K. Doss and P. B. P. Phipps, "Process for the Preparation of Electroless Nickel with Superior Thermal Stability," Plat. Surf. Finish., April (1985) 64-67.
[18] M. Bouanani, F. Cherkaoui, M. Cherkaoui, S. Belcadi, R. Fratesi, and G. Roventi, "Ni-Zn-P alloy Deposition from Sulfate Bath: Inhibitory Effect of Zinc," J. Appl. Electrochem., 29 (1999) 1171-1176.
[19] Y. Kashiwagi, M. Umetani, H. Kataoka, K. Inoue, S. Nakamura, and S. Morimoto, "Die for Press-Molding Optical Elements," United States Patent, No. 6,009,728.
[20] K. Hibino, M. Umetani, and H. Kataoka, "Press-Molding Die, Method for Manufacturing the Same and Glass Article Molded with the Same," United States Patent, No. 6,119,485.
[21] D.S. Rickerby and A. Matthews, Advanced Surface Coatings : a handbook of surface engineering, Glasgow, Blackie, (1991).
[22] R. Behrisch Ed., "Sputtering by Particle Bombardment," Applied Physics, 47, Berlin, Springer, (1981).
[23] P.D. Toensend, and J. C. Kelly, Ion Implantation: Sputtering and Their Applications, Academic Press, (1976).
[24] M. Ohring Ed., The Materials Science of Thin Films, Academic Press, London, UK, (1992) Chap.3 123-124.
[25] K. Parker, "Electroless Nickel: state of the art", Plat. and Surf. Fin., March (1992) 29-33. Fin., Sept. (1996) 36-37.
[26] G.O. Mallory and J. B. Hajdu, Electroless Plating: Foundamentals and Applications, American Electroplaters and Surface Finichers Society Orlando, FL, 1990.
[27] C.R. Shipiey Jr., "Historical Highlights of Electroless Plating", Plat. and Surf. Fin., 71[6] (1984) 92-99.
[28] P. Nash, Phase Diagrams of Binary Nickel Alloys, ASM International, June (1991) 235.
[29] R.C. Agarwala and S. Ray, "Variation of Structure in Electroless Ni-P Films With Phosphorus Content", Z. Metallkunde, 79 (1988) 472-475.
[30] S.H. Park and D. N. Lee, "A Study on the Microstructure and Phase Transformation of Electroless Nickel Deposit", J. Mater. Sci., 23 (1988) 1643-1654.
[31] R.M. Allen and J. B. VanderSande, "The Structure of Electroless Ni-P Films as a Function of Composition," Scripta Metallurgica, 16 (1982) 1161-1164.
[32] P.S. Kumar and P. K. Nair, "Studies on Crystallization of Electroless Ni-P Deposits,"J. Mater. Proc. Technol., 56 (1996) 511-520.
[33] P.R. Krishnamoorthy, B. H. Narayana, T.V. Ramakrishna and M. Sheknar Kumar, "Properties of Electroless Nickel-Phosphorus Deposits After Crystallization", Metal Finishing, Nov. (1992) 13-18.
[34] J.K. Dennis & T. E. Such, Nickel and Chromium Plating, 2nd Ed., Butterworths & Co Ltd., (1986) Chap. 11.
[35] K.H. Hur, J.H. Jeong, D.N. Lee, J. Mater. Sci. 25 (1990) 2573.
[36] Y.Z. Zhang, Y.Y. Wu, M. Yao, J. Mater. Sci. Letters 17 (1998) 37.
[37] K.H. Hur, J.H. Jeong, D.N. Lee, J. Mater. Sci. 26 (1991) 2037.
[38] I. Koiwa, M. Usuda, K. Yamada, T. Osaka, J. Electrochem. Soc. 135 (1998) 718.
[39] S.F. Luo, E.M. Ma, P.X. Li, J. Vac. Sci. Technol. A 4 (6) (1986) 2862.
[40] C.J. Chen, K.L. Lin, J. Electochem. Soc. 146(1) (1999) 137.
[41] J. Nicholls, P. Hancock, L. Yasiri, Mater. Sci. Tech. 5 (1986) 799.
[42] Y. Wang, C. Xiao and Z. Deng, “Structure and Corrosion Resistance of Electroless Ni-Cu-P”, Plating and Surface Finishing, March (1992) 57-59.
[43] Y.C. Chang, "Fabrication and Crystallization Behaviors of Sputtered Ni-Cu-P Films on Tool Steel", M. S. Thesis, National Tsing Hua University, (2000) 42-54.
[44] Y.Y. Tsai, F.B. Wu, Y.I. Chen, P.J. Peng, J.G. Duh, S.Y. Tsai, "Thermal stability and mechanical properties of Ni-W-P electroless deposits", Surface and Coatings Technology 146-147 (2001) 502-507.
[45] C.F. Conde, H. Miranda, A. conde, R. Marquez, "Non-isothermal crystallization and isothermal transformation kinetics of the Ni68.5Cr14.5P17 metallic glass" J. Mater. Sci. 24 (1989) 139-142.
[46] K. Maeda, T. Ikari, Y. Akashi, K. Futagami, "Crystallization mechanism of amorphous Ni65Cr16P19 metallic alloys", J. Mater. Sci. 29 (1994) 1449-1454.
[47] W.C. Oliver, G.M. Pharr, J. Mater. Res., 7 (1992) 1564.
[48] M. Ohring, “ The Material Science of Thin Films” Academic Press (1992).
[49] F.B. Wu, W.Y. Chen, J.G. Duh, Y.Y. Tsai, Y.I. Chen, Surf. Coat. Technol. 163-164 (2003) 227.
[50] S.C. Mehta, D.A. Smith, U.Erb, Mater. Sci. Eng. A204 (1995) 227.
[51] TH. Hentschel, D. Isheim, R. KirChheim, F. Muller, H. Kreye, Acta Mater. 48 (2000) 933.
[52] P. Nash, Phase Diagrams of Binary Nickel Alloys, 1st printing, ASM International, USA, 1991, p. 367.
[53] N. Krasteva, V. Fotty, S. Armyanov, J. Electochem. Soc. 141 (1994) 2864.
[54] E.O. Hall, Proc. Phys. Soc. B64 (1951) 747
[55] N.J. Petch, J. Iron Steel Inst. 173 (1953) 25.