研究生: |
許伯仰 Paul-Yang Hsu |
---|---|
論文名稱: |
磷化銦鎵/砷化鎵異質接面雙極性電晶體及砷化鎵/砷化鋁鎵垂直共振腔面射型雷射磊晶片之光譜分析 Spectroscopic Analysis in InGaP/GaAs HBT and GaAs/AlGaAs VCSEL Epitaxial Wafers |
指導教授: |
張一熙
Yee-Shyi Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 光譜 、反射式光子調制 、反射率 、異質接面雙極性電晶體 、垂直共振腔面射型雷射 、砷化鎵 |
外文關鍵詞: | Spectroscopy, Photoreflectance, Reflectivity, HBT, VCSEL, GaAs |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文中我們分別以調制光譜(PR)及反射率光譜(R)技術分析HBT及VCSEL磊晶片,文中樣品為使用MOCVD技術成長的InGaP/GaAs HBT與GaAs/AlGaAs VCSEL磊晶片。實驗主要分三部份,第一,使用PR技術量測HBT磊晶片,由譜線中的FKOs訊號計算出樣品內建電場,並觀察此內建電場F與樣品摻雜濃度Nd的關聯性,發現F與Nd1/2成正比,且與文獻資料相當吻合;第二,同樣使用PR技術量測HBT磊晶片,在發現譜線中出現FKOs以外的異常背景訊號時,我們輔以溼式蝕刻技術找出此背景訊號的來源,分析譜線結果得到此背景訊號源自於Emitter與Cap層之間的化合物;第三,使用R技術量測VCSEL磊晶片,從得到的反射率譜線可大致判斷VCSEL磊晶層的品質,進而達到篩選的目的。
In the thesis, we apply the photoreflectance (PR) and reflectivity (R) technique on the analysis of heterojunction bipolar transistor (HBT) and vertical cavity surface emitting laser (VCSEL) epitaxial wafers. The samples are grown by metalorganic chemical vapor deposition (MOCVD) method, and the material systems are InGaP/GaAs for HBT, and GaAs/AlGaAs for VCSEL wafers. We can divide the contents of this thesis into three parts. First, from the PR spectrum of HBT wafers, electric field in the collector/base can be obtained by Franz-Keldysh oscillations (FKOs) calculation. Comparing the electric field (F) and doping concentration (Nd), we can find a correlation between F and Nd.
Second, from the PR spectrum of certain HBT wafers, there is a background signal between 1.3-1.7 eV. Assisted by wet etching and PR technique, we can find out the origin of this background signal is related to the interface compound between arsenide and phosphide layers. Third, we can do the reflectivity measurement after removing the laser pump beam from PR system. With R spectrum, we can determine where the problems are in VCSEL wafers, for example, the error in thickness and composition.
Spectroscopic analysis has been a powerful tool in compound semiconductor measurement, because of its nondestructivity, noncontactness, ease of sample preparing, and the richness of signal.
1. Kroemer, H. “Hetrostructure Bipolar Transistors and Integrated Circuit,” Proc. IEEE, Vol. 70, pp.13-25, 1982.
2. Wei S.H., A. Zunger, “Fingerprints of CuPt Ordering in III-V Semiconductor Alloys: Valance-Band Splittings, Band-Gap Reduction, and X-ray Structure Factors,” Phys. Rev. B, Vol. 57, No.15, pp.8983-8988, 1998.
3. Scholz, F.C. Geng, M. Burkard, H.P. Gauggel, H. Schweizer, R. Wirth, A. Moritz, and A. Hangleiter, “Ordering in InGaP: Is It Relevant for Device?” Phys. E, Vol. 2, pp.8-14, 1998.
4. Chang, P.C., A.G. Baca, N.Y. Li, X.M. Xie, H.Q. Hou, and E. Armour, “InGaP/InGaAsN/GaAs NpN Double-Hetrojunction Bipolar Transistor,” Appl. Phys. Lett., Vol. 76, No.16, pp.2262-2264, 2000.
5. Kenichi Iga, Fumio Koyama, Susumu Kinoshita, “Surface Emitting Semiconductor Lasers,” IEEE J. of Quantum Electronics, Vol. 24, No.9, pp.1845-1855, 1988.
6. Seraphin, B.O., “The Effect of an Electric Field on the Reflectivity of Germanium,” Proc. 7th Int. Conf. Phys. Semi., ed. By M. Hulin, Academic, Dunod, Paris, 1964.
7. Chen, D.K., Fundamentals of Engineering Electromagnetics, Addision-Wesley, New York, pp.272-330, 1996.
8. Seraphin, B.O., Semiconductors and Semimetals, Vol. 9, ed. By R.K. Willardson and A.C. Beer, Academic, New York, pp.1-13, 1972.
9. Aspnes, D.E., “Modulation Spectroscopy/Electric Field Effects on the Dielectric Function of Semiconductors,” Vol. 2, ed. By M. Balkanski, North-Holland Publishing Co., Amsterdam, pp.109-154, 1980.
10. Aspnes, D.E., “Electric Field Effects on the Dielectric Constant od Solids,” Phys. Rev., Vol. 153, pp.972-974, 1967.
11. Bloss, W.L., “Electric Field Dependence of the Eigenstates of Couples Quantum Well,” J. Appl. Phys., Vol. 67, pp.14212-1424, 1990.
12. Wang, E.Y., W.A. Albers, Jr., and C.E. Bleil, “Light Modulated Reflectance of Semiconductors,” Proc. Int. Conf. On II-VI Semiconducting Compounds, Benjamin, New York, 1967.
13. Ernst, P., C. Geng, F. Scholz, H.Schweizer, Y. Zhang, A. Mascarenhas, “Band-Gap Reduction and Valence-Band Splitting of Ordered GaInP2,” Appl. Phys. Lett., Vol. 67, No.16, pp.2347-2349, 1995.
14. Froyen, S., A. Zunger, and A. Mascarenhas, “Polarization Fields and Band Offsets in GaInP/GaAs and Order/Disordered GaInP Superlattices,” Appl. Phys. Lett., Vol. 68, No.20, pp.2852-2854, 1996.
15. Fresina, M.T., Hartmann, Q.J., Thomas, S., Ahmari, D.A., Caruth, D., Feng, M., Stillman, G.E., “InGaP/GaAs HBT with Novel Layer Structure for Emitter Ledge Fabrication,” Electron Device Meeting, pp.207-210, 1996.
16. Y.S. Huang, W. D. Sun, F.H. Pollak, J.L. Freeouf, I.D. Calder, and R.E. Mallard, “Contactless Electroreflectance Characterization of GaInP/GaAs Heterojunction Bipolar Transistor Structures,” Appl. Phys. Lett., Vol. 73, No.2, pp.214-216, 1998.
17. C.J. Lin, Modulation Spectroscopy Characterization of InGaP/GaAs and InGaP/InGaAsN/GaAs NpN Hetrojunction Bipolar Transistor Structures, NTUST EE, 2001.
18. Neamen, D.A., Semiconductor Physics & Device, Chicago, pp.212-220, 1997.
19. P.J. Klar, G. Rowland, T.E. Sale, T.J.C. Hosea, and R. Grey, “Reflectance and Photomodulated Reflectance Studies of Cavity Mode and Excitonic Transitions in an InGaAs/GaAs/AlAs/AlGaAs VCSEL Structure,” Phys. Status Solidi A, Vol. 170, pp.145-158, 1998.