研究生: |
吳鈺徵 Wu, Yu-Cheng |
---|---|
論文名稱: |
影像處理技術於果蠅活動能力監測之研究 Image Processing Study on Monitoring Activity of Drosophila |
指導教授: |
蔡宏營
Tsai, Hung-Yin |
口試委員: |
江安世
Chiang, Ann-Shyn 胡竹生 Hu, Jwu-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 影像處理 、果蠅 、活動能力 |
外文關鍵詞: | Image Processing, Drosophila, Activity |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於果蠅的基因與人類有60%的相似度,且果蠅各種行為與人類相似,諸如:睡眠行為、求偶行為等。果蠅亦具有生長周期短、基因轉植技術成熟的優點,尤其是人腦的神經結構複雜,果蠅腦神經結構相對於人腦較為簡單。因此,果蠅在行為學以及腦神經科學領域被大量的運作為研究的對象。而過去研究中多利用人力方法進行數據的分析,此方法容易造成誤差以及浪費人力資源與時間。
本研究目的在於運用影像方法針對果蠅睡眠行為與果蠅對氣味產生的行為開發程式以進行分析,期望藉此達到減少人力資源與時間的浪費。為研究果蠅於平台內的行為需要先將果蠅由影像中抓取出來,使用影像處理方法中的瞬間差異法與背景消去法進行移動物的擷取,其中為了取得最好之背景影像運用多張影格合成,加以運用二值化方法與形態學方法去除雜訊以及將相連之個體分離。在睡眠行為研究上開發出可以同時偵測果蠅運動、休息與睡眠三種數據之程式,並運用統計方法定義出休息狀態之參數。此外,運用影像處理方法模擬現行睡眠實驗使用之Drosophila Activity Monitoring System(DAMS),驗證針對本研究所使用之影片其影像處理方法有較正確的分析結果。而在果蠅對氣味所產生的行為分析軟體上可以針對多隻果蠅在平台內之分布情形進行統計,並經由實驗驗證此自動化系統與分析程式之成效。藉由這些行為研究程式的開發,有助於有效提高實驗的效率,並且取得最正確之實驗數據。
Since Drosophila’s genes are 60% similar to human beings’, behaviors of Drosophila and human beings’ are alike such as sleep and courtship. Furthermore, the short life of Drosophila and the matured transgenic techniques make Drosophilae widely used in biological experiments, behavior research and neuroscience. However, most of experiments depend on labor to analyze the results. It is time-wasting and inefficient. In addition, data errors can be a big issue between experiments by different researchers.
In the current study, image processing methods have been developed for monitoring the sleeping behavior of a Drosophila group and the behavior affected by different odors in order to increase the analysis efficiency and the correctness. In both algorithms, the frame difference method is used to capture the moving object/Drosophilae in the recorded video. Binarization and morphology methods are used to eliminate the noises. In addition, the overlapped Drosophila can be identified based on the morphology method. In the current sleeping calculator, the sleep period, the sleep bout number, the sleep bout length, the activity period, the activity bout number, the activity bout length, the rest period, the rest bout number, the rest bout length and the speed can be obtained. Besides, three states of Drosophila are redefined for better meaning. In addition, the image processing method is used to simulate the Drosophila Activity Monitoring System (DAMS), which is widely used for sleeping behavior of Drosophila in recent study. Image processing helps to increase the higher accuracy than DAMS does. The objective of odor algorithm is to develop a monitoring system which includes the air/odor flow equipment to study the behavior of Drosophila affected by different odors. With the help of these algorithms, higher experimented efficiency, accuracy and correctness can be provided.
[1] D. Gavrila and S. Munder, “Multi-cue pedestrian detection and tracking from a moving vehicle,” International Journal of Computer Vision, vol. 73, pp. 41-59, 2007.
[2] S. Zehang, G. Bebis and R. Miller, “On-road vehicle detection: a review,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, pp.694-711, 2006.
[3] T. B. Moeslund, A. Hilton and V. Krüger, “A survey of advances in vision-based human motion capture and analysis,” Comput. Vis. Image Underst., vol. 104, pp. 90-126, 2006.
[4] B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” presented at the Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI '81),pp.674-679, 1981.
[5] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artificial Intelligence, vol. 17, pp. 185-203, 1981.
[6] J. L. Barron and N. A. Thacker, “Tutorial: Computing 2D and 3D optical flow,” TINA Memos: Human and Machine Vision, pp.2-16, 2004.
[7] W. Hu, T. Tan, L. Wang and S. Maybank, “A survey on visual surveillance of object motion and behaviors,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 34, pp. 334-352, 2004.
[8] S. Y. Elhabian, K. M. E. Sayed and S. H. Ahmed, “Moving object detection in spatial domain using background removal techniques-State-of-Art,” Recent Patents on Computer Science, vol. 1, pp. 32-54, 2008.
[9] F. Y. Hu, Y. N. Zhang and L. Yao, “An effective detection algorithm for moving object with complex background,” in Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, vol. 8, pp. 5011-5015, 2005.
[10] N. Bocheva, "Detection of motion discontinuities between complex motions," Vision Research, vol. 46, pp. 129-140, 2006.
[11] I. Haritaoglu, D. Harwood and L. S. Davis, “W4: Real-time surveillance of people and their activities,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 809-830, 2000.
[12] A. Kale, A. Sundaresan, A. N. Rajapalan, N. P. Cuntoor, A. K. R. Chowdhury, V. Kruger and R. Chellappa, “Identification of humans using gait,” IEEE Transactions on Image Processing , vol. 13, pp. 1163-1173, 2004.
[13] J. R. Martin, R. Ernst, M. Heisenberg,” Temporal pattern of locomotor activity in Drosophila melanogaster ,” J Comp Physiol A, vol.184, pp.73-84, 1999.
[14] J. C. Hendricks, S. M. Finn, K. A. Panckeri, J. Chavkin, J. A. Williams, A. Sehgal, A. I. Pack, “Rest in Drosophila is a sleep-like state,” Neuron, vol.25, pp. 129-138, 2000.
[15] P. J. Shaw, C. Cirelli, R. J. Greenspan, G. Tononi, “Correlates of sleep and waking in Drosophila melanogaster ,” Science, vol.287, pp.1834-1837, 2000.
[16] R. J. Greenspan, G. Tononi, C. Cirelli, P. J. Shaw, “Sleep and the fruit fly,” TRENDS in Neurosciences, vol.24, pp.142-145, 2001.
[17] C. Cirelli, D. Bushey, S. Hill, R. Huber, R. Kreber, B. Ganetzky, G. Tononi,” Reduced sleep in Drosophila shaker mutants,” NATURE, vol.434, pp.1087-1092, 2005.
[18] K. Koh, J. M. Evans, J. C. Hendricks, A. Sehgal, “A Drosophila model for age-associated changes in sleep: wake cycles,” PNAS, vol. 103, pp.13843-13847, 2006.
[19] J. H. Catterson, S. Knowles-Barley, K. James, M. M. S. Heck, A. J. Harmer and P. S. Hartley, “Dietary Modulation of Drosophila Sleep-Wake Behaviour ,” PLoS one, vol.5, pp.1-8, 2010.
[20] A. C. Keene, E. R. Duboue, D. M. McDonald, M. Dus, G. S. B. Suh, S. Waddell, J. Blau, “Clock and cycle Limit Starvation-Induced Sleep Loss in Drosophila,” Current Biology, vol.20, pp.1209-1215, 2010.
[21] J. Donlea, A. Leahy, M. S. Thimgan, Y. Suzuki, B. N. Hughson, M. B. Sokolowski, P. J. Shaw, “foraging alters resilience/vulnerability to sleep disruption and starvation in Drosophila,” PNAS, vol.109, pp.2613-2618, 2012.
[22] T. Tully and W. G. Quinn, “Classical conditioning and retention in normal and mutant Drosophila melanogaster,” J Comp Physiol A,vol.157, pp.263-277, 1985.
[23] P. Monte, C. Woodard, R. Ayer, M. Lilly, H. Sun, J. Carlson, “Characterization of The Larval Olfactory Response in Drosophila and Its Genetic-Basis,” Behavior Genetics, vol.19, pp.267-283, 1989.
[24] R. R. H. Anholt, J. J. Fanara, G. M. Fedorowicz, I. Ganguly, N. H. Kulkarni, T. F. C. Mackay, S. M. Rollmann, “Functional genomics of odor-guided behavior in Drosophila melanogaster,” Chemical Senses, vol.26, pp.215-221, 2001.
[25] J. W. Zhu, K. C. Park, T. C. Baker, “Identification of Odors from Overripe Mango That Attract Vinegar Flies, Drosophila melanogaster,” Journal of Chemical Ecology, Vol. 29, pp.899-909, 2003.
[26] C. Faucher, M. Forstreuter, M. Hilker, M. de Bruyne, “Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context,” Journal of Experimental Biology, vol.209, pp.2739-2748, 2006.
[27] S. A. Kreher, D. Mathew, J. Kim, J. R. Carlson, “Translation of sensory input into behavioral output via an olfactory system,” Neuron, vol.59, pp.110-124, 2008.
[28] J. L. Semmelhack, J. W. Wang, “Select Drosophila glomeruli mediate innate olfactory attraction and aversion,” Nature, vol.459, pp.218-223, 2009.
[29] J. R. Martin, “A portrait of locomotor behavior in Drosophila determined by a video-tracking paradigm,” Behavioural Processes, vol.67, pp.207-219, 2004.
[30] R. B. Ramazani, H. R. Krishnan, S. E. Bergeson, N. S. Atkinson, “Computer automated movement detection for the analysis of behavior,” Journal of Neuroscience Methods, vol.162, pp.171-179, 2007.
[31] J. E. Zimmerman, D. M. Raizen, M. H. Maycock, G. Maislin, A. I. Pack, “A video method to study Drosophila sleep,” SLEEP, vol.31, pp.1587-1598, 2008.
[32] K. Branson, A. A. Robie, J. Bender, P. Perona and M. H. Dickinson, “High-throughput ethomics in large groups of Drosophila,” Nature Methods, vol.6, pp.451-457, 2009.
[33] H. Dankert, L. Wang, E. D. Hoopfer, D. J. Anderson and P. Perona, “Automated monitoring and analysis of social behavior in Drosophila,” Nature Methods, vol.6, pp. 297-303, 2009.
[34] G. F. Gilestro, “Video tracking and analysis of sleep in Drosophila melanogaster,” Nature Protocols, vol.7, pp.995-1007, 2012.
[35] N. Donelson, E. Z. Kim, J. B. Slawson, C. G. Vecsey, R. Huber, L. C. Griffith, “High-Resolution Positional Tracking for Long-Term Analysis of Drosophila Sleep and Locomotion Using the “Tracker” Program,” PLoS one, vol.7, issue 5, 2012.
[36] M. Reif, K. E. Linsenmair and M. Heisenberg, “Evolutionary significance of courtship conditioning in Drosophila melanogaster,” Animal Behaviour, vol.63, pp. 143-155, 2002.
[37] S. Chen, A. Y. Lee, N. M. Bowens, R. Huber and E. A. Kravitz., “Fighting fruit flies: A model system for the study of aggression,” PNAS, vol. 99, pp.5664–5668, 2002.