研究生: |
張格愷 Chang, Ko-Kai |
---|---|
論文名稱: |
新穎含銅多層次沸石的製備與其丙烯選擇性氧化反應的催化研究 Novel Copper-Containing Hierarchical Zeolites: Preparation and Catalytic Study on Selective Oxidation of Propylene |
指導教授: |
楊家銘
Yang, Chia-Min |
口試委員: |
鄭淑芬
Cheng, Soofin 張淑閔 Chang, Sue-Min |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 115 |
中文關鍵詞: | 多層次沸石 、丙烯選擇性氧化 、結構導向試劑 |
外文關鍵詞: | Hierarchical zeolites, Structure-directing agent, Selective oxidation of propylene |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多層次孔洞沸石由於有高比表面積且含有中孔洞,因此在催化過程中氣體反應物更容易接觸材料中的活性位點,再加上物質傳遞效率的提升,使得多層次孔洞沸石的催化效率比一般沸石塊材高。要在不摻雜鋁的沸石中放入金屬最常見的方法為含浸法,但是含浸法並不能控制金屬在材料中的分布位置以及分散性,本論文成功設計出具螯合官能基之結構導向試劑,C6H13-N+(CH3)2-(CH2)6-N+(CH3)2-(CH2)6-NH-(CH2)2-NH-(CH2)6-N+(CH3)2-(CH2)6-N+(CH3)2-C6H13(4Br-), 簡寫為 N2-En-N2,利用此結構導向試劑能夠合成出具有金屬螯合能力且奈米層板以十字交錯方式進行自我支撐的多層次孔洞 silicalite-1,利用位在層狀結構間的金屬螯合官能基可以與銅離子形成穩定的錯合物,進而得到負載高分散銅的多層次孔洞沸石催化劑,並將其應用於丙烯的選擇性氧化反應,且在180 ℃ 下有高丙烯醛選擇性。
Hierarchical silicalite-1 zeolites with high surface areas, high pore volume ratios, high accessibilities, and ready mass transport properties have better catalytic performance than bulk silicalite-1. However, the most common strategy to prepare metal-containing silicalite-1 is impregnation which could not easily control the position and dispersity of metal. Here, we successfully synthesize a new type triblock structure-directing agent (SDA) with metal chelating group in the middle. The triblock SDA is C6H13-N+(CH3)2-(CH2)6-N+(CH3)2-(CH2)6-NH-(CH2)2-NH-(CH2)6-N+(CH3)2-(CH2)6-N+(CH3)2-C6H13(4Br-), abbreviated to N2-En-N2. By using this new type SDA, we could synthesize hierarchical silicalite-1 comprising highly-branched, self-pillared, orthogonally-stacked and metal chelating agent at the same time. The highly disperse copper complexes which are between two MFI nanosheets could be prepared by aid of chelating part. We applied this catalyst to selective oxidation of propylene catalytic reaction, and high acrolein selectivity at 180℃ could be obtained.
1. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T., Reporting Physisorption Data for Gas/Solid Systems With Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57, 603-619.
2. Chen, L.H., Li, X.Y., Rooke, J.C., Zhang, Y.H., Yang, X.Y., Tang, Y., Xiao, F.S., and Su, B.L., Hierarchically structured zeolites: synthesis, mass transport properties and applications. J. Mater. Chem. 2012, 22, 17381-17403.
3. Wilson, S.T., Lok, B.M., Messina, C.A., Cannan, T.R., and Flanigen, E.M., Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. Acs Sym. Ser. 1983, 218, 79-106.
4. Notari, B., Microporous crystalline titanium silicates. Adv. Catal. 1996, 41, 253-334.
5. Breck, D.W., Zeolite molecular sieves: structure, chemistry, and use. J. Chromatogr. Sci. 1973, 13, 18A.
6. Barrer, D.W., (1978) Zeolites and Clay Minerals as Sorbents and Molecular Sieves. London: Academic Press.
7. Morris, R.E., Modular materials from zeolite-like building blocks. J. Mater. Chem. 2005, 15, 931-938.
8. McCusker, L.B., Liebau, F., and Engelhardt, G., Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts. Pure Appl. Chem. 2001, 73, 381-394.
9. Zhao, X.S., Lu, G.Q.M., and Millar, G.J., Advances in mesoporous molecular sieve MCM-41. Ind. Eng. Chem. Res. 1996, 35, 2075-2090.
10. Flanigen, E.M., Bennett, J.M., Grose, R.W., Cohen, J.P., Patton, R.L., Kirchner, R.M., and Smith, J.V., Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature, 1978, 271, 512-516.
11. Olson, D.H., Kokotailo, G.T., Lawton, S.L., and Meier, W.M., Crystal structure and structure-related properties of ZSM-5. J. Phys. Chem. 1981, 85, 2238-2243.
12. Vankoningsveld, H., Vanbekkum, H., and Jansen, J.C., On the Location and Disorder of the Tetrapropylammonium (TPA) Ion in Zeolite ZSM-5 with Improved Framework Accuracy. Acta Crystallogr. B 1987, 43, 127-132.
13. Olson, D.H., (2007) Atlas of Zeolite Framework Types, New York: Elsevier.
14. Olson, D.H., Haag, W.O., and Lago, R.M., Chemical and physical properties of the ZSM-5 substitutional series. J. Catal. 1980, 61, 390-396.
15. Foster, M.D., Rivin, I., Treacy, M.M.J., and Friedrichs, O.D., A geometric solution to the largest-free-sphere problem in zeolite frameworks. Micropor. Mesopor. Mat. 2006, 90, 32-38.
16. Barrer, R.M., Syntheses and reactions of mordenite. J. Chem. Soc. 1948, 435, 2158-2163.
17. Cundy, C.S. and Cox, P.A., The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Micropor. Mesopor. Mat. 2005, 82, 1-78.
18. Cundy, C.S. and Cox, P.A., The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chem. Rev. 2003, 103, 663-701.
19. Persson, A.E., Schoeman, B.J., Sterte, J., and Ottesstedt, J.E., The synthesis of discrete colloidal particles of TPA-silicalite-1. Zeolites, 1994, 14, 557-567.
20. Breck, D. W., Zeolite Molecular Sieves: Structure, Chemistry, and Use. J. Chromatogr. Sci. 1975, 13, 18A.
21. van Donk, S., Bitter, J.H., Verberckmoes, A., Versluijs-Helder, M., Broersma, A., and de Jong, K.P., Physicochemical characterization of porous materials: Spatially resolved accessibility of zeolite crystals. Angew. Chem. Int. Edit. 2005, 44, 1360-1363.
22. Perez-Ramirez, J., Christensen, C.H., Egeblad, K., Christensen, C.H., and Groen, J.C., Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 2008, 37, 2530-2542.
23. Burton, A., Elomari, S., Chen, C.Y., Harris, T.V., and Vittoratos, E.S., SSZ-53 and SSZ-59: Two novel extra-large pore zeolites. Chem. Eur. J. 2003, 9, 5737-5748.
24. Corma, A., Diaz-Cabanas, M.J., Jorda, J.L., Rey, F., Sastre, G., and Strohmaier, K.G., A Zeolitic Structure (ITQ-34) with Connected 9-and 10-Ring Channels Obtained with Phosphonium Cations as Structure Directing Agents. J. Am. Chem. Soc. 2008, 130, 16482-16483.
25. Corma, A., Diaz-Cabanas, M., Martinez-Triguero, J., Rey, F., and Rius, J., A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature, 2002, 418, 514-517.
26. Freyhardt, C.C., Tsapatsis, M., Lobo, R.F., Balkus, K.J., and Davis, M.E., A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature, 1996, 381, 295-298.
27. Huang, L.R., Cox, E.C., Austin, R.H., and Sturm, J.C., Continuous particle separation through deterministic lateral displacement. Science, 2004, 304, 987-990.
28. Strohmaier, K.G. and Vaughan, D.E.W., Structure of the first silicate molecular sieve with 18-ring pore openings, ECR-34. J. Am. Chem. Soc. 2003, 125, 16035-16039.
29. Wagner, P., Yoshikawa, M., Lovallo, M., Tsuji, K., Tsapatsis, M., and Davis, M.E., CIT-5: a high-silica zeolite with 14-ring pores. Chem. Commun. 1997, 0, 2179-2180.
30. Tosheva, L. and Valtchev, V.P., Nanozeolites: Synthesis, crystallization mechanism, and applications. Chem. Mater. 2005, 17, 2494-2513.
31. Larsen, S.C., Nanocrystalline zeolites and zeolite structures: Synthesis, characterization, and applications. J. Phys. Chem. C, 2007, 111, 18464-18474.
32. Hsu, C.Y., Chiang, A.S.T., Selvin, R., and Thompson, R.W., Rapid synthesis of MFI zeolite nanocrystals. J. Phys. Chem. B, 2005, 109, 18804-18814.
33. Schoeman, B.J., Analysis of the nucleation and growth of TPA-silicalite-1 at elevated temperatures with the emphasis on colloidal stability. Micropor. Mesopor. Mat. 1998, 22, 9-22.
34. Mintova, S., Valtchev, V., and Kanev, I., A correlation between the fundamental properties of templates and the kinetics of ZSM-5 crystallization. Zeolites, 1993, 13, 102-106.
35. Goa, Y., Yoshitake, H., Wu, P., and Tatsumi, T., Controlled detitanation of ETS-10 materials through the post-synthetic treatment and their applications to the liquid-phase epoxidation of alkenes. Micropor. Mesopor. Mat. 2004, 70, 93-101.
36. Pavel, C.C., Park, S.H., Dreier, A., Tesche, B., and Schmidt, W., Structural defects induced in ETS-10 by postsynthesis treatment with H2O2 solution. Chem. Mater. 2006, 18, 3813-3820.
37. Pavel, C.C. and Schmidt, W., Generation of hierarchical pore systems in the titanosilicate ETS-10 by hydrogen peroxide treatment under microwave irradiation. Chem. Commun. 2006, 0, 882-884.
38. Jones, C.W., Hwang, S.J., Okubo, T., and Davis, M.E., Synthesis of hydrophobic molecular sieves by hydrothermal treatment with acetic acid. Chem. Mater. 2001, 13, 1041-1050.
39. Sano, T., Tadenuma, R., Wang, Z.B., and Soga, K., Realumination of dealuminated HZSM-5 zeolites by acid treatment. Chem. Commun. 1997, 46, 1945-1946.
40. Datka, J., Kolidziejski, W., Klinowski, J., and Sulikowski, B., Dealumination of zeolite Y by H4EDTA. Catal. Lett. 1993, 19, 159-165.
41. Fejes, P., Kiricsi, I., Hannus, I., Kiss, A., and Schobel, G., A novel method for the dealumination of zeolites. React. Kinet. Catal. L. 1980, 14, 481-488.
42. Parikh, P.A., Subrahmanyam, N., Bhat, Y.S., and Halgeri, A.B., Synthesis of diisopropylbenzene over dealuminated zeolite beta. J. Mol. Catal. 1994, 88, 85-92.
43. Groen, J.C., Peffer, L.A.A., Moulijn, J.A., and Perez-Ramirez, J., Mechanism of hierarchical porosity development in MFI zeolites by desilication: The role of aluminium as a pore-directing agent. Chem.-Eur. J. 2005, 11, 4983-4994.
44. Janssen, A.H., Koster, A.J., and de Jong, K.P., On the shape of the mesopores in zeolite Y: A three-dimensional transmission electron microscopy study combined with texture analysis. J. Phys. Chem. B, 2002, 106, 11905-11909.
45. Carrott, M., Russo, P.A., Carvalhal, C., Carrott, P.J.M., Marques, J.P., Lopes, J.M., Gener, I., Guisnet, M., and Ribeiro, F.R., Adsorption of n-pentane and iso-octane for the evaluation of the porosity of dealuminated BEA zeolites. Micropor. Mesopor. Mater. 2005, 81, 259-267.
46. Dessau, R.M., Valyocsik, E.W., and Goeke, N.H., Aluminum zoning in ZSM-5 as revealed by selective silica removal. Zeolites, 1992, 12, 776-779.
47. Cizmek, A., Subotic, B., Aiello, R., Crea, F., Nastro, A., and Tuoto, C., Dissolution of high-silica zeolites in alkaline solutions II. Dissolution of ‘activated’ silicalite-1 and ZSM-5 with different aluminum content. Microporous Mater. 1995, 4, 159-168.
48. Groen, J.C., Moulijn, J.A., and Perez-Ramirez, J., Alkaline posttreatment of MFI zeolites. From accelerated screening to scale-up. Ind. Eng. Chem. Res. 2007, 46, 4193-4201.
49. Groen, J.C., Abello, S., Villaescusa, L.A., and Perez-Ramirez, J., Mesoporous beta zeolite obtained by desilication. Micropor. Mesopor. Mat. 2008, 114, 93-102.
50. Groen, J.C., Sano, T., Moulijn, J.A., and Perez-Ramirez, J., Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions. J. Catal. 2007, 251, 21-27.
51. Perez-Ramirez, J., Verboekend, D., Bonilla, A., and Abello, S., Zeolite Catalysts with Tunable Hierarchy Factor by Pore-Growth Moderators. Adv. Funct. Mater. 2009, 19, 3972-3979.
52. Groen, J.C., Jansen, J.C., Moulijn, J.A., and Perez-Ramirez, J., Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication. J. Phys. Chem. B, 2004, 108, 13062-13065.
53. Boisen, A., Schmidt, I., Carlsson, A., Dahl, S., Brorson, M., and Jacobsen, C.J.H., TEM stereo-imaging of mesoporous zeolite single crystals. Chem. Commun. 2003, 958-959.
54. Chu, N.B., Wang, J.Q., Zhang, Y., Yang, J.H., Lu, J.M., and Yin, D.H., Nestlike Hollow Hierarchical MCM-22 Microspheres: Synthesis and Exceptional Catalytic Properties. Chem. Mater. 2010, 22, 2757-2763.
55. Yang, Z.X., Xia, Y.D., and Mokaya, R., Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template. Adv. Mater. 2004, 16, 727-732.
56. Jacobsen, C.J.H., Madsen, C., Houzvicka, J., Schmidt, I., and Carlsson, A., Mesoporous zeolite single crystals. J. Am. Chem. Soc. 2000, 122, 7116-7117.
57. Fan, W., Snyder, M.A., Kumar, S., Lee, P.S., Yoo, W.C., McCormick, A.V., Penn, R.L., Stein, A., and Tsapatsis, M., Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nat. Mater. 2008, 7, 984-991.
58. Chen, H.Y., Wydra, J., Zhang, X.Y., Lee, P.S., Wang, Z.P., Fan, W., and Tsapatsis, M., Hydrothermal Synthesis of Zeolites with Three-Dimensionally Ordered Mesoporous-Imprinted Structure. J. Am. Chem. Soc. 2011, 133, 12390-12393.
59. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., and Beck, J.S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359, 710-712.
60. Na, K., Choi, M., and Ryoo, R. Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous and Mesoporous Materials, 2013, 166, 3-19.
61. Karlsson, A., Stocker, M., and Schmidt, R., Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach. Micropor. Mesopor. Mat. 1999, 27, 181-192.
62. Wang, H. and Pinnavaia, T.J., MFI zeolite with small and uniform intracrystal mesopores. Angew. Chem. Int. Edit. 2006, 45, 7603-7606.
63. Choi, M., Srivastava, R., and Ryoo, R., Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks. Chem. Commun. 2006, 4380-4382.
64. Choi, M., Na, K., Kim, J., Sakamoto, Y., Terasaki, O., and Ryoo, R., Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461, 246-251.
65. Park, W., Yu, D., Na, K., Jelfs, K.E., Slater, B., Sakamoto, Y., and Ryoo, R., Hierarchically Structure-Directing Effect of Multi-Ammonium Surfactants for the Generation of MFI Zeolite Nanosheets. Chem. Mater. 2011, 23, 5131-5137.
66. Chaikittisilp, W., Suzuki, Y., Mukti, R.R., Suzuki, T., Sugita, K., Itabashi, K., Shimojima, A., and Okubo, T., Formation of Hierarchically Organized Zeolites by Sequential Intergrowth. Angew. Chem. Int. Ed., 2013, 52, 3355-3359.
67. Chang, A., Hsiao, H.M., Chen, T.H., Chu, M.W., and Yang, C.M., Hierarchical silicalite-1 octahedra comprising highly-branched orthogonally-stacked nanoplates as efficient catalysts for vapor-phase Beckmann rearrangement. Chem. Commun. 2016, 52, 11939-11942.
68. Shen, X.F., Mao, W.T., Ma, Y.H., Xu, D.D., Wu, P., Terasaki, O., Han, L., and Che, S.N., A Hierarchical MFI Zeolite with a Two-Dimensional Square Mesostructure. Angew. Chem. Int. Edit. 2018, 57, 724-728.
69. Shen, X.F., Mao, W.T., Ma, Y.H., Peng, H.G., Xu, D.D., Wu, P., Han, L., and Che, S.A., Mesoporous MFI Zeolite with a 2D Square Structure Directed by Surfactants with an Azobenzene Tail Group. Chem.-Eur. J. 2018, 24, 8615-8623.
70. Liu, L., Ye, X.P., and Bozell, J.J., A Comparative Review of Petroleum-Based and Bio-Based Acrolein Production. Chemsuschem, 2012, 5, 1162-1180.
71. Bracey, C.L., Carley, A.F., Edwards, J.K., Ellis, P.R., and Hutchings, G.J., Understanding the effect of thermal treatments on the structure of CuAu/SiO2 catalysts and their performance in propene oxidation. Catal. Sci. Technol. 2011, 1, 76-85.
72. Bettahar, M.M., Costentin, G., Savary, L., and Lavalley, J.C., On the partial oxidation of propane and propylene on mixed metal oxide catalysts. Appl. Catal. A-Gen. 1996, 145, 1-48.
73. Adams, C.R. and Jennings, T.J., Mechanism Studies of the Catalytic Oxidation of Propylene. J. Catal. 1964, 3, 549-558.
74. Yu, J.S. and Kevan, L., Catalytic partial oxidation of propylene to acrolein over copper(II)-exchanged M-X and M-Y zeolites where M = Mg2+, Ca2+, Li+, Na+, K+, and H+: evidence for separate pathways for partial and complete oxidation. J. Phys. Chem. 1991, 95, 3262-3271.
75. Yu, J.S. and Kevan, L., Effects of reoxidation and water vapor on selective partial oxidation of propylene to acrolein in copper(II)-exchanged X and Y zeolites. J. Phys. Chem. 1991, 95, 6648-6653.
76. Liu, C.H., Lai, N.C., Lee, J.F., Chen, C.S., and Yang, C.M., SBA-15-supported highly dispersed copper catalysts: Vacuum-thermal preparation and catalytic studies in propylene partial oxidation to acrolein. J. Catal. 2014, 316, 231-239.
77. Reitz, J.B. and Solomon, E.I., Propylene oxidation on copper oxide surfaces: Electronic and geometric contributions to reactivity and selectivity. J. Am. Chem. Soc. 1998, 120, 11467-11478.
78. Haber, J. and Turek, W., Kinetic studies as a method to differentiate between oxygen species involved in the oxidation of propene. J. Catal. 2000, 190, 320-326.
79. Voge, H.H., Wagner, C.D., and Stevenson, D.P., Mechanism of propylene oxidation over cuprous oxide. J. Catal. 1963, 2, 58-62.
80. Adams, C.R. and Jennings, T.J., Investigation of the mechanism of catalytic oxidation of propylene to acrolein and acrylonitrile. J. Catal. 1963, 2, 63-68.
81. Schulz, K.H. and Cox, D.F., Propene adsorption on Cu2O single-crystal surfaces. Surf. Sci. 1992, 262, 318-334.
82. Schulz, K.H. and Cox, D.F., Propene Oxidation over Cu2O Single-Crystal Surfaces: A Surface Science Study of Propene Activation at 1 atm and 300 K. J. Catal. 1993, 143, 464-480.
83. Akimoto, M., Akiyama, M., and Echigoya, E., Nature of Oxygen Species Incorporated into Acrylaldehyde in Vapor-Phase Oxidation of Propylene over Supported Copper Catalyst. B. Chem. Soc. Jpn. 1976, 49, 3367-3371.
84. Su, W.G., Wang, S.G., Ying, P.L., Feng, Z.C., and Li, C., A molecular insight into propylene epoxidation on Cu/SiO2 catalysts using O2 as oxidant. J. Catal. 2009, 268, 165-174.
85. He, J.L., Zhai, Q.G., Zhang, Q.H., Deng, W.P., and Wang, Y., Active site and reaction mechanism for the epoxidation of propylene by oxygen over CuOx/SiO2 catalysts with and without Cs+ modification. J. Catal. 2013, 299, 53-66.
86. Duzenli, D., Atmaca, D.O., Gezer, M.G., and Onal, I., A density functional theory study of partial oxidation of propylene on Cu2O(001) and CuO(001) surfaces. Appl. Surf. Sci. 2015, 355, 660-666.
87. Zhu, W.M., Zhang, Q.H., and Wang, Y., Cu(I)-catalyzed epoxidation of propylene by molecular oxygen. J. Phys. Chem. C, 2008, 112, 7731-7734.
88. Wang, Y., Chu, H., Zhu, W.M., and Zhang, Q.H., Copper-based efficient catalysts for propylene epoxidation by molecular oxygen. Catal. Today, 2008, 131, 496-504.
89. Vaughan, O.P.H., Kyriakou, G., Macleod, N., Tikhov, M., and Lambert, R.M., Copper as a selective catalyst for the epoxidation of propene. J. Catal. 2005, 236, 401-404.
90. Na, K., Jo, C., Kim, J., Cho, K., Jung, J., Seo, Y., Messinger, R.J., Chmelka, B.F., and Ryoo, R., Directing Zeolite Structures into Hierarchically Nanoporous Architectures. Science, 2011, 333, 328-332.
91. Chen, L., Zhu, S.Y., Wang, Y.M., and He, M.Y., One-step synthesis of hierarchical pentasil zeolite microspheres using diamine with linear carbon chain as single template. New J. Chem. 2010, 34, 2328-2334.
92. Xue, T., Liu, H.P., Zhang, Y., Wu, H.H., Wu, P., and He, M.Y., Synthesis of ZSM-5 with hierarchical porosity: In-situ conversion of the mesoporous silica-alumina species to hierarchical zeolite. Micropor. Mesopor. Mat. 2017, 242, 190-199.
93. Varoon, K., Zhang, X.Y., Elyassi, B., Brewer, D.D., Gettel, M., Kumar, S., Lee, J.A., Maheshwari, S., Mittal, A., Sung, C.Y., Cococcioni, M., Francis, L.F., McCormick, A.V., Mkhoyan, K.A., and Tsapatsis, M., Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane. Science, 2011, 334, 72-75.
94. J. Peisach, W.E.B., Structural Implications Derived from the Analysis of Electron Paramagnetic Resonance Spectra of Natural and Artificial Copper Proteins. Arch. Biochem. Biophys., 1974, 165, 691-708.
95. Tu, C.H., Wang, A.Q., Zheng, M.Y., Wang, X.D., and Zhang, T., Factors influencing the catalytic activity of SBA-15-supported copper nanoparticles in CO oxidation. Appl. Catal. A-Gen. 2006, 297, 40-47.
96. Zhang, X.W., Huang, N., Wang, G., Dong, W.J., Yang, M., Luan, Y., and Shi, Z., Synthesis of highly loaded and well dispersed CuO/SBA-15 via an ultrasonic post-grafting method and its application as a catalyst for the direct hydroxylation of benzene to phenol. Micropor. Mesopor. Mat. 2013, 177, 47-53.
97. Chen, L.F., Guo, P.J., Zhu, L.J., Qiao, M.H., Shen, W., Xu, H.L., and Fan, K.N., Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1,4-butanediol. Appl. Catal. A-Gen. 2009, 356, 129-136.
98. Yin, Y., Jiang, W.J., Liu, X.Q., Li, Y.H., and Sun, L.B., Dispersion of copper species in a confined space and their application in thiophene capture. J. Mater. Chem. 2012, 22, 18514-18521.
99. Kau, L.S., Spirasolomon, D.J., Pennerhahn, J.E., Hodgson, K.O., and Solomon, E.I., X-ray Absorption-edge Determination of the Oxidation-state and Coordination Number of Copper Application to the Type-3 Site in Rhusvernicifera Laccase and Its Reaction with Oxygen. J. Am. Chem. Soc., 1987, 109, 6433-6442.
100. Kristiansen, T., Mathisen, K., Einarsrud, M.A., Bjorgen, M., and Nicholson, D.G., Single-Site Copper by Incorporation in Ambient Pressure Dried Silica Aerogel and Xerogel Systems: An X-ray Absorption Spectroscopy Study. J. Phys. Chem. C, 2011, 115, 19260-19268.
101. Zhang, R.Q. and McEwen, J.S., Local Environment Sensitivity of the Cu K-Edge XANES Features in Cu-SSZ-13: Analysis from First-Principles. J. Phys. Chem. Lett. 2018, 9, 3035-3042.
102. Frenkel, A.I., Korshin, G.V., and Ankudinov, A.L., XANES study of Cu2+ binding sites in aquatic humic substances. Environ. Sci. Technol. 2000, 34, 2138-2142.
103. Mingos, D.M.P.D., (2012) Molecular Electronic Structures of Transition Metal Complexes II. New york: Spronger Science & Business Media.
104. Jentys, A., Estimation of mean size and shape of small metal particles by EXAFS. Phys. Chem. Chem. Phys. 1999, 1, 4059-4063.