研究生: |
林穎慧 Ying-Huei Lin |
---|---|
論文名稱: |
Chiral Effect on Crystallization Behavior of Crystalline Polylactides 掌性效應於結晶性聚乳酸高分子結晶行為之影響 |
指導教授: |
何榮銘
Rong-Ming Ho |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 107 |
中文關鍵詞: | 掌性效應 、聚乳酸 |
外文關鍵詞: | Chiral effect, polylactides |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Typical living ring-opening polymerization has been used to prepare enantiomeric polylactides, PLLA and PDLA homopolymers, so as to examine the chiral effect on the crystallization of the polylactides. As evidenced by differential scanning calorimetry, the crystallization rate of polylactides was strongly dependent upon the maximum annealing temperature (Tmax) above the suggested equilibrium melting (Tmo). The crystallization rate decreased with the increase of the Tmax. It is reasonable to suggest that the dependence might be attributed to the long-life crystalline nucleus and referred to nucleus memory effect for polymeric crystallization. However, the observed change on crystallization rate was independent upon annealing time at the Tmax; revealing that it is an equilibrium behavior instead of kinetic cause. We conjecture that the dependence might be attributed to the formation of partially ordered phase (i.e., mesophase) which exists above the suggested equilibrium melting. Furthermore, we speculate that the formation of mesophase is a signature of chiral interaction for chiral crystalline polymers. To further examine the chiral effect on crystallization, blends of the enantiomeric polylactides were prepared so as to clarify the formation of crystalline stereocomplex based on the concerns of chiral interaction. Consistent to previous studies by different groups, our results realized that the crystallization can be significantly increased by introducing the enantiomeric polymers for crystallization. The change on crystallization rate is a character of crystalline stereocomplex formation and referred to the significant interaction resulting from enantiomeric chiral interaction. According to the experimental results, significant increase in the crystallization rate can be simply achieved by adding small amount of enantiomeric polylactide that may play as a nucleation agent for the promotion of crystallization. Also, two crystallization processes can be recognized in the blends with 0.1 volume fraction of enantiomeric polylactide whereas single crystallization process was found for blends with higher fraction of enantiomeric polylactide. To further investigate the mechanism during crystallization (namely, the self-assembly process for ordering), the optical activity of the single-chain conformation in dilute solution and corresponding change on crystallization process were conducted so as to examine the self-assembly evolution for the occurrence of crystalline stereocomplex. The variation of intensity and corresponding shifting in the spectrum of the blends of enantiomeric polylactides can be identified by time-resolved circular dichroism measurements. It reflects that the change should correspond to the significant chiral interaction resulting from the blends of enantiomeric polylactides during self-assembly in dilute solution. Consequently, the crystalline stereocomplex can be formed so as to give significant high melting as compared to polylactide homopolymers.
1. Carothers, W. H.; Dorough, G. L.; Van N. J. J. Am. Chem. Soc. 1932, 54,761.
2. Auras, R.; Harte, B.; Selke, S. Macromol. Biosci. 2004, 4, 835.
3. Hartmann, M. H.; Whiteman, N. ‘‘TAPPI Polymers, Laminations, &
Coatings Conference’’, Chicago, IL, United States 2000, 467.
4. Hartmann, M. H., ‘‘High MolecularWeight Polylactic Acid Polymers’’, in: Biopolymers from Renewable Resources, 1st edition, D. L. Kaplan, Ed., Springer-Verlag Berlin Heidelberg, Berlin 1998, 367.
5. Hyon, S.-H.; Jamshidi, K.; Ikada, Y. In Polymers as Biomaterials; American Chemical Society: Washington, D.C., 1985; ACS Symp. Ser.51.
6. Nijenhuis, A. J.; Grijpma, D. W.; Pennings, A. J. Macromolecules 1992, 25, 6419.
7. Kricheldorf, H. R.; Boettcher, C. Pure Appl Chem 1993 A30, 441.
8. Kricheldorf, H. R.; Kreiser-Saunders, I.; Ju¨ rgens, C.; Wolter, D. Macromol Symp 1996, 103, 85.
9. Schwach, G.; Coudane, J.; Engel, R.; Vert, M. J Polym Sci Part A: Polym Chem 1997, 35, 3431.
10. Zhang, J.; Gan, Z.; Zhong, Z.; Jing, X. Polym Int 1998, 45, 60.
11. US 5142023 (1992), invs.: Gruber, P. R.; Hall, E. S.; Kolstad, J. H.; Iwen, M. L.; Benson, R. D.; Borchardt, R. L.
12. Brochu, S.; Prud’homme R. E.; Barakat I.; Je´roˆme R. Macromolecules 1995, 28, 5230.
13. Kister, G.; Cassanas, G.; Vert, M. Polymer 1998, 39, 267.
14. Sarasua, J. R.; Prud’homme, R.E.; Wisniewski, M.; Borgne, A. L.; Spassky, N. Macromolecules 1998, 31, 3895.
15. Meaurio, E.; Zuza, E.; Lo´pez-Rodrı´guez, N.; Sarasua, J. R. J. Phys.Chem. B 2006, 110, 5790.
16. Meaurio, E.; Lo´pez-Rodrı´guez, N.; Sarasua, J. R. Macromolecules 2006, 39, 9291
17. Furuhashi,Y.; Kimura,Y.; Yoshie,N.; Yamane H. Polymer 2006, 47, 5965.
18. YASUNIWA, M.; TSUBAKIHARA, S.; SUGIMOTO, Y.; NAKAFUKU C.; J Polym Sci Part B:Polym Phys 2004, 42, 25.
19. Krikorian V.; Pochan D. J. Macromolecules 2005, 38, 6520.
20. Zhang, J.; Tsuji, H.; Noda, I.; Ozaki, Y. J. Phys. Chem. B 2004, 108, 11514.
21. Zhang, J.; Tsuji, H.; Noda, I.; Ozaki, Y. Macromolecules 2004, 37, 6433.
22. Zhang, J.; Duan, Y.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Macromolecules 2005, 38, 8012.
23. http://www.natureworksllc.com
24. Tsuji, H.; Ikada, Y. Polymer 1999, 40, 6699.
25. Tsuji, H.; Fukui, I. Polymer 2003, 44, 2891.
26. Tsuji, H. Polymer 2000, 41, 3621.
27. Tsuji, H. Biomaterials 2003, 24, 537.
28. Ikada, Y.; Jamshidi, K.; Tsuji, H.; Hyon, S.-H. Macromolecules 1987, 20, 904.
29. Fox T. G.; Garrett, B. S.; Goode, W. E.; Gratch, S.; Kincaid, J. F.; Spell, A.; Stroupe, J. D. J. Am. Chem. Soc. 1958, 80, 1768.
30. Lavalle´e, C.; Prud’homme, R. E. Macromolecules 1989, 22, 2438.
31. Marín, R.; Martínez de Ilarduya, A.; Romero, P.; Sarasua, J. R.; Meaurio, E.; Zuza, E.; Muñoz-Guerra, S. Macromolecules 2008, 41, 3734.
32. Tsuji, H.; Horii, F.; Hyon, S.-H.; Ikada, Y. Macromolecules 1991, 24, 2719.
33. Tsuji, H.; Hyon, S.-H.; Ikada, Y. Macromolecules 1991, 24, 5651.
34. Tsuji, H.; Hyon, S.-H.; Ikada, Y. Macromolecules 1991, 24, 5657.
35. Tsuji, H.; Hyon, S.-H.; Ikada, Y. Macromolecules 1992, 25, 2940.
36. Tsuji, H.; Hyon, S.-H.; Ikada, Y. Macromolecules 1992, 25, 5719.
37. Tsuji, H.; Horii, F.; Nakagawa, M.; Ikada, Y.; Odani, H.; Kitamaru, R. Macromolecules 1992, 25, 4114.
38. Tsuji, H.; Ikada, Y. Macromolecules 1993, 26, 6918.
39. Urayamaa, H.; Kanamoria, T.; Fukushimab, K.; Kimura, Y. Polymer 2003, 44,5635.
40. Xu, H.; Teng, C.; Yu, M. Polymer 2006, 47, 3922.
41. Tsuji, H.; Nakano, M. ; Hashimoto, M.; Takashima, K.; Katsura,S.; Mizuno, A. Biomacromolecules 2006, 7, 3316.
42. Lee, W.K.; Iwata, T.; Gardella, Jr. J. A. Langmuir 2005, 21, 11180.
43. Fukushima, K.; Hirata, M.; Kimura, Y. Macromolecules 2007, 40, 3049.
44. Biela, T.; Duda, A.; Penczek P. Macromolecules 2006, 39, 3710.
45. SHIRAHAMA, H.; ICHIMARU, A.; TSUTSUMI, C.; NAKAYAMA, Y.; YASUDA, H. J Polym Sci Part B:Polym chem. 2005, 243, 438.
46. Portinha, D.; Boue, F.; Bouteiller, L.; Carrot, G.; Chassenieux, C.; Pensec, S.; Reiter, G. Macromolecules 2007, 40, 4037.
47. Tsuji H. Macromol. Biosci. 2005, 5, 569.
48. Slager J., Domb A. J, Adv. Drug Delivery Rev. 2003, 55, 549.
49. Sarasua, J. R.; Lo´pez Rodrı´guez, N.; Lo´pez Arraiza, A. ; Meaurio, E. Macromolecules 2005, 38, 8362.
50. Schmidt, S. C.; Hillmyer, M. A. J. Polym. Sci., Part B:Polym. Phys. 2001, 39, 300.
51. Tsuji, H.; Tezuka, Y. Biomacromolecules 2004, 5, 1181.
52. http://en.wikipedia.org/wiki/Main_Page
53. Li, C. Y.; Cheng, S. Z. D.; Ge, J. J. Bai, F.; Zhang, J. Z. ; Mann, I. K.; Chien, L. C.; Harris, F. W.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 72.
54. Sakurai, S-.I.; Kuroyanagi, K.; Morino, K.; Kunitake, M.; Yashima, E. Macromolecules 2003, 36, 9670.
55. Yashima, E.; Nimura, T.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1996, 118, 9800.
56. Saito, M. A.; Maeda, K.; Onouchi, H.; Yashima, E. Macromolecules 2000, 33, 4616.
57. Onouchi, H.; Maeda, K.; Yashima, E. J. Am. Chem. Soc. 2001, 123, 7441.
58. Maeda, K.; Goto, H.; Yashima, E. Macromolecules 2001, 34, 1160.
59. Yashima, E.; Huang, S.; Matsushima, T.; Okamoto, Y. Macromolecules 1995, 28, 4184.
60. Morino, K.; Maeda, K.; Okamoto, Y.; Yashima, E.; Sato, T. Chem. Eur. J. 2002, 8, 5112.
61. Morino, K.; Maeda, K.; Yashima, E. Macromolecules 2003, 36, 1480.
62. Yashima, E.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1995, 117, 11596.
63. Nandi, N.; Vollhardt, D. Chem. Rev. 2003, 103, 4033.
64. Maillard, D.; Prud’homme, R.E. Macromolecules 2006, 39, 4272.
65. Bassett, D. C.; Hodge, A. M. Polymer 1978, 19, 469.
66. Xu, J.; Guo, B.; Zhang, Z.; Zhou, J.; Jiang, Y.; Yan, S.; Li, L.; Wu, Q.; Chen, G.; Schultz, J. M. Macromolecules 2004, 37, 4118
67. Keith, H. D.; Padden, F. J. Macromolecules 1996, 29, 7776
68. Maillard, D.; Prud’homme, R.E. Macromolecules 2008, 41, 1705
69. Chao, C.-C.; Chen, C.-K.; Chiang, Y.-W.; Ho, R.-M. Macromolecules 2008, 41, 3949.
70. De Santis, P.; Kovacs, A. J Biopolym 1968, 6, 299.
71. Hoogsteen, W.; Postema, A. R.; Pennings, A. J.; Brinke, G. T.; Zugenmaier, P. Macromolecules 1990, 23, 634.
72. Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Polymer 2000, 41, 8909.
73. Eling, B.; Gogolewski, S.; Pennings, A.J. Polymer 1982,23,1587.
74. Brizzolara, D.; Cantow, H. J.; Diederichs, K.; Keller, E.; Domb, A.J. Macromolecules 1996, 29, 191.
75. Puiggali, J.; Ikada, Y.; Tsuji, H.; Cartier, L.; Okihara, T.; Lotz, B. Polymer 2000, 41, 8921.
76. Alema´n, C.; Lotz, B.; Puiggali, J. Macromolecules 2001, 34, 4795.
77. Cho, T. Y.; Strobl, G. Polymer 2006, 47, 1036.
78. Zhang, J. M.; Tashiro, K.; Domb, A. J.; Tsuji, H. Macromol. Symp.
2006, 242, 274.
79. Kawai, T.; Rahman, N.; Matsuba, G.; Nishida, K.; Kanaya, T.; Nakano, M.; Okamoto, H.; Kawada, J.; Usuki, A.; Honma, N.; Nakajima, K.; Matsuda, M. Macromolecules 2007, 40, 9463.
80. Okihara, T.; Tsuji, M.; Kawaguchi, A.; Katayama, K.; Tsuji, H.; Hyon, S.H.; Ikada, Y. J. Macromol. Sci.sPhys. 1991, 30,119.
81. Cartier, L.; Okihara, T.; Lotz, B. Macromolecules 1997, 30, 6313.
82. Zhang, J.; Tashiro, K.; Tsuji, H.; Domb A. J. Macromolecules 2007, 40,1049.
83. Karukstis, K. K.; Perelman,L. A.; Wong, W. K. Langmuir 2002, 18, 10363.
84. Tong, X.; Cui, Li.;Zhao, Y.; Macromolecules 2004, 37, 3101.
85. Miyagawa, T.; Yamamoto, M.; Muraki, R.; Onouchi, H.; Yashima, E.; J. Am. Chem. Soc. 2007, 129, 3676.