研究生: |
阮德昭 Nguyen, Duc-Chau |
---|---|
論文名稱: |
基於鈀奈米結構的氫氣感測器及具矯頑力增進的鐵鈀垂直磁紀錄介質之研究 Development of Pd nanostructure based hydrogen gas sensors and coercivity-enhanced FePd-based perpendicular magnetic recording media |
指導教授: |
李志浩
Lee, Chih-Hao 張嘉升 Chang, Chia-Seng |
口試委員: |
李尚凡
Lee, Shang-Fan 李志甫 Lee, Jyh-Fu 劉鏞 Liou, Yung 林宏基 Lin, Hong-Ji |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 124 |
中文關鍵詞: | 鈀奈米結構 、氫感測器 、鐵鈀 、磁垂直紀錄 |
外文關鍵詞: | Pd nanostructure, Hydrogen gas sensors, FePd, Perpendicular magnetic recording |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分別探討Pd薄膜的奈米尺度的織構對於氫氣感測器的影響以及Fe/Pd多層薄膜的矯頑力改善對於垂直磁紀錄的影響。第一部分說明奈米結構的氫氣感測器是如何成長島狀結構的Pd薄膜在MgO(001)基板上並且闡述間隙關閉機制對於其影響,我們運用直流磁濺鍍的方法在攝氏550度的基板溫度環境下沉積100 nm的Pd薄膜使其擁有(002)的優選取向。隨著稀土元素釓(Gd)或鋱(Tb)的參雜量的增加,成長出的晶粒大小以及表面型態產生了顯著的變化,對於提高氫氣偵測中濃度變化的敏感度提供了一個研究面向。藉由比對樣品間的變化了解,間隙關閉機制使得我們提供氫氣環境給所有的氫氣感測器時其電阻值都出現明顯的下降。第二部分的研究聚焦在FePd合金薄膜中垂直矯頑力高於900 Oe的研究成果以了解垂直磁紀錄媒介的可能。我們用磁濺鍍的方式在MgO (001)基板上層積[Fe(2 nm)/Pd(2 nm)]×30的多層膜結構,並且在攝氏700度的基板溫度下退火1小時以及10小時,藉此得到了不按化學當量比例組成的FePd薄膜。結果顯示,隨著退火時間的增加,具有(001)優選取向的FePd薄膜除了呈現出晶粒大小以及表面粗糙度的增加之外也有增強結晶度以及降低微觀應變的表現,我們觀察到其薄膜的垂直矯頑力顯著的增加到1.5 kOe以及觀察到Pd失去其4d軌域的電子,最後再由分析X光吸收光譜中FePd四方晶系中Fe的散射相來了解薄膜微結構的細節。此篇論文也提供一個方法藉由從延伸X光吸收光譜精細結構中提取出的正方性比率結合薄膜的化學當量比例的偏差來決定吸收光譜中長程序化的參數。
This thesis work presents the development of the nano-scale textures of Pd films and coercivity enhancement of Fe/Pd multilayer thin films for hydrogen gas sensing and perpendicular magnetic recording, respectively. Firstly, the simple preparation of the self-assembled network of palladium islands on MgO(001) substrate and the exploration of the gap closing mechanism in these nanostructured hydrogen sensors are reported. Pd films of 100 nm in thickness, deposited at 550 ˚C using the DC magnetron sputtering technique, possess the (002) preferred orientation that it still retains while doping with rare-earth metals such as Gd or Tb. However, the grain size and surface morphology of the Pd films change markedly with the addition of dopants, offering a route for tailoring the film toward higher sensitivity and scalable responses to changes in H2 concentrations. All the sensors show the decreased resistance in the presence of H2, the behavior attributed to the physical gap closing mechanism. Sensing performances of the samples are also compared. Secondly, the research focus was also on the attainment of perpendicular coercivity higher than 900 Oe in an FePd alloy thin film for realization of the perpendicular magnetic recording media. The off-stoichiometric FePd films were prepared through the multilayer growth of [Fe(2 nm)/Pd(2 nm)]×30 on MgO(001) substrates by magnetron sputtering, followed by the post-annealing at 700 ˚C for 1 h and 10 h. The results show that, with increasing annealing time, the FePd thin films are predominantly (001)-oriented with progressive increase of the grain size and surface roughness, as well as the improved crystallinity and reduced micro-strain. Accordingly, the perpendicular coercivity is significantly increased to the value of 1.5 kOe, and Pd loses its 4d electrons upon alloying. Furthermore, analysis of X-ray absorption data elucidates some structural details of the Fe scattering phase in addition to the dominant tetragonal FePd phase. Additionally, the thesis also presents a way of determining the long-range order parameter for the FePd alloy thin film, using combined information of tetragonality ratio extracted from extended x-ray absorption fine-structure spectroscopy and the stoichiometric deviation of the thin film.
References
[1] A. Pundt, “Hydrogen in nano-sized metals,” Adv. Eng. Mater. 6 (2004) 11–21.
[2] J. Villatoro, D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13 (2005) 5087–5092.
[3] Z. Zhao, M. A. Carpenter, H. Xia, D. Welch, “All-optical hydrogen sensor based on a high alloy content palladium thin film,” Sens. Actuators B Chem. 113 (2006) 532–538.
[4] T. Hubert, L. Boon-Brett, G. Black, U. Banach, “Hydrogen sensors – a review,” Sens. Actuators B Chem. 157 (2011) 329–352.
[5] E. Lee, J. M. Lee, J. H. Koo, W. Lee, T. Lee, “Hysteresis behavior of electrical resistance in Pd thin films during the process of absorption and desorption of hydrogen gas,” Int. J. Hydrogen Energy 35 (2010) 6984–6991.
[6] E. Lee, J. M. Lee, E. Lee, J.-S. Noh, J. H. Joe, B. Jung, W. Lee, “Hydrogen gas sensing performance of Pd-Ni alloy thin films,” Thin Solid Films 519 (2010) 880–884.
[7] J.-S. Noh, J. M. Lee, W. Lee, “Low-dimensional palladium nanostructures for fast and reliable hydrogen gas detection,” Sensors 11 (2011) 825–851.
[8] A. Gurlo, D. R. Clarke, “High-sensitivity hydrogen detection: hydrogen-induced swelling of multiple cracked palladium films on compliant substrates,” Angew. Chem. Int. Ed. 50 (2011) 10130–10132.
[9] I. Lundstrom, H. Sundgren, F. Winquist, M. Eriksson, C. Krantz-Rulcker, A. Lloyd-Spetz, “Twenty-five years of field effect gas sensor research in Linkoping,” Sens. Actuators B Chem. 121 (2007) 247–262.
[10] A. K. Sharma, B. D. Gupta, “On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors,” J. Appl. Phys. 101 (2007) 093111.
[11] P. Fedtke, M. Wienecke, M.-C. Bunescu, M. Pietrzak, K. Deistung, E. Borchardt, “Hydrogen sensor based on optical and electrical switching,” Sens. Actuators B Chem. 100 (2004) 151–157.
[12] S. F. Silva, L. Coelho, O. Frazão, J. L. Santos, F. X. Malcata, “A review of palladium-based fiber-optic sensors for molecular hydrogen detection,” IEEE Sensors J. 12 (2012) 93–102.
[13] D. Monzón-Hernández, D. Luna-Moreno, D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136 (2009) 562–566.
[14] D. Luna-Moreno, D. Monzón-Hernandez, “Effect of the Pd-Au thin film thickness uniformity on the performance of an optical fiber hydrogen sensor,” Appl. Surf. Sci. 253 (2007) 8615–8619.
[15] Y. I. Chou, H. C. Chiang, C. C. Wang, “Study on Pd functionalization of microcantilever for hydrogen detection promotion,” Sens. Actuators B Chem. 129 (2008) 72–78.
[16] J. F. Patton, S. R. Hunter, M. J. Sepaniak, P. G. Daskos, D. B. Smith, “Rapid response microsensor for hydrogen detection using nanostructured palladium films,” Sens. Actuators A Phys. 163 (2010) 464–470.
[17] D. J. Kirby, D. T. Chang, F. P. Stratton, J. J. Zinck, “A differential capacitive thin film hydrogen sensor,” Sens. Actuators B Chem. 141 (2009) 424–430.
[18] S. Lomperski, M. Anselmi, I. Huhtiniemi, “Ultrasonic and resistive hydrogen sensors for inert gas–water vapour atmospheres,” Meas. Sci. Technol. 11 (2000) 1–8.
[19] K. Skucha, Z. Fan, K. Jeon, A. Javey, B. Boser, “Palladium/silicon nanowire Schottky barrier-based hydrogen sensors,” Sens. Actuators B Chem. 145 (2010) 232–238.
[20] D. Luna-Moreno, D. Monzón-Hernandez, J. Villatoro, G. Badenes, “Optical fiber hydrogen sensor based on core diameter mismatch and annealed Pd–Au thin films,” Sens. Actuators B Chem. 125 (2007) 66–71.
[21] L. Cui, Y. Chen, G. Zhang, “An optical fiber hydrogen sensor with Pd/Ag film,” Optoelectron. Lett. 5 (2009) 220–223.
[22] F. C. Gielens, H. D. Tong, C. J. M. van Rijn, M. A. G. Vorstman, J. T. F. Keurentjes, “Microsystem technology for high-flux hydrogen separation membranes,” J. Membr. Sci. 243 (2004) 203–213.
[23] Y. Okuhara, Y. Imai, Y. Noguchi, M. Takata, “Influence of phase transformation in Pd hydride on the recovery characteristics of optical hydrogen sensors,” Bull. Mater. Sci. 22 (1999) 999–1001.
[24] M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sens. Actuators B Chem. 22 (1994) 155–163.
[25] P. Liu, S.-H. Lee, H. M. Cheong, C. E. Tracy, J. R. Pitts, R. D. Smith, “Stable Pd/V2O5 optical H2 sensor,” J. Electrochem. Soc. 149 (2002) H76–H80.
[26] A. Chtanov, M. Gal, “Differential optical detection of hydrogen gas in the atmosphere,” Sens. Actuators B Chem. 79 (2001) 196–199.
[27] D. Ding, Z. Chen, C. Lu, “Hydrogen sensing of nanoporous palladium films supported by anodic aluminum oxides,” Sens. Actuators B Chem. 120 (2006) 182–186.
[28] M.-C. Daniel, D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104 (2004) 293–346.
[29] G. Korotcenkov, Handbook of gas sensor materials: Properties, advantages and shortcomings for applications, Vol. 2: New trends and technologies (USA: Springer Science+Business Media, 2014) pp. 76–77.
[30] M. Brust, C. J. Kiely, “Some recent advances in nanostructure preparation from gold and silver particles: a short topical review,” Colloids Surf. A 202 (2002) 175–186.
[31] O. Masala O, R. Seshadri, “Synthesis routes for large volumes of nanoparticles,” Annu. Rev. Mater. Res. 34 (2004) 41–81.
[32] C. Burda, X. Chen X, R. Narayanan, M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105 (2005) 1025–1102.
[33] C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, V. V. Agrawal, P. Saravanan P, “Films of metal nanocrystals formed at aqueous—organic interfaces,” J. Phys. Chem. B 107 (2003) 7391–7395.
[34] H. N. Vasan, C. N. R. Rao, “Nanoscale Ag–Pd and Cu–Pd alloys,” J. Mater. Chem. 5 (1995) 1755–1757.
[35] S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, “Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices,” Science 287 (2000) 1989–1992.
[36] S. T. He, S. S. Xie, J. N. Yao, H. J. Gao, S. J. Pang, “Self-assembled two-dimensional superlattice of Au–Ag alloy nanocrystals,” Appl. Phys. Lett. 81 (2002) 150–152.
[37] E. Dovgolevsky, U. Tisch, H. Haick, “Chemically sensitive resistors based on monolayer-capped cubic nanoparticles: towards configurable nanoporous sensors,” Small 5 (2009) 1158–1161.
[38] C. Drake, S. Deshpande, D. Bera, S. Seal, “Metallic nanostructured materials based sensors,” Int. Mater. Rev. 52 (2007) 289–317.
[39] T. K. Thanh, L. W. W. Green, “Functionalisation of nanoparticles for biomedical applications,” Nano Today 5 (2010) 213–230.
[40] K. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello, “Gold nanoparticles in chemical and biological sensing,” Chem. Rev. 112 (2012) 2739–2779.
[41] K.-J. Chen, C.-J. Lu, “A vapor sensor array using multiple localized surface plasmon resonance bands in a single UV-vis spectrum,” Talanta 81 (2010) 1670–1675.
[42] Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schogl, A. Yasuda, T. Vossmeyer, “Self-assembled gold nanoparticle/alkanethiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B 107 (2003) 7406–7413.
[43] T. Ogawa, K. Kobayashi, G. Masuda, T. Takase, S. Maeda, “Electronic conductive characteristics of devices fabricated with 1,10-decanedithiol and gold nanoparticles between 1-μm electrode gaps,” Thin Solid Films 393 (2001) 374–378. (Proceedings from the 4th International Conference on Nano-Molecular Electronics (ICNME 2000), 5-7 December 2000, Kobe, Japan)
[44] H.-L. Zhang, S. D. Evans, J. R. Henderson, R. E. Miles, T.-H. Shen, “Vapour sensing using surface functionalized gold nanoparticles,” Nanotechnology 13 (2002) 439–444.
[45] T. Karakouz, A. Vaskevich, I. Rubinstein, “Polymer-coated gold island films as localized plasmon transducers for gas sensing,” J. Phys. Chem. B 112 (2008) 14530–14538.
[46] Y. Joseph, B. Guse, T. Vossmeyer, A. Yasuda, “Gold nanoparticle/organic networks as chemiresistor coatings: the effect of film morphology on vapor sensitivity,” J. Phys. Chem. C 112 (2008) 12507–12514.
[47] F. Favier, E. C. Walter, M. P. Zach, T. Benter, R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science 293 (2001) 2227–2231.
[48] K. T. Kim, J. Sim, S. M. Cho, “Hydrogen gas sensor using Pd nanowires electro-deposited into anodized alumina template,” IEEE Sens. J. 6 (2006) 509–513.
[49] J. van Lith, A. Lassesson, S. A. Brown, M. Schulze, J. G. Partridge, A. Ayesh, “A hydrogen sensor based on tunneling between palladium clusters,” Appl. Phys. Lett. 91 (2007) 181910.
[50] B. J. Murray, E. C. Walter, R. M. Penner, “Amine vapor sensing with silver mesowires,” Nano Lett. 4 (2004) 665–670.
[51] A. Tao, F. Kim, C. Hess, J. Goldberger, R. R. He, Y. G. Sun, Y. N. Xia, P. D. Yang, “Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3 (2003) 1229–1233.
[52] K. J. Jeon, M. Jeun, E. Lee, J. M. Lee, K. I. Lee, P. von Allmen, W. Lee, “Finite size effect on hydrogen gas sensing performance in single Pd nanowires,” Nanotechnology 19 (2008) 495501.
[53] C. Cheng, R. K. Gonela, Q. Gu, D. T. Haynie, “Self-assembly of metallic nanowires from aqueous solution,” Nano Lett. 5 (2005) 175–178.
[54] V. La Ferrara, B. Alfano, E. Massera, G. Di Francia, “Palladium nanowires assembly by dielectrophoresis investigated as hydrogen sensors,” IEEE Trans. Nanotechnol. 7 (2008) 776–781.
[55] K. J. Jeon, J. M. Lee, E. Lee, W. Lee, “Individual Pd nanowire hydrogen sensors fabricated by electron-beam lithography,” Nanotechnology 20 (2009) 135502.
[56] S. Zhang, D. Zhao, Advances in magnetic materials: processing properties, and performance (USA: CRC Press, 2017) pp. 581–626.
[57] A. P. Guimarães, Principles of Nanomagnetism, 2nd ed. (Switzerland: Springer International Publishing AG, 2017).
[58] S. Khizroev, D. Litvinov, Perpendicular magnetic recording (USA: Springer Science + Business Media, Inc., 2005) pp.1–31, and 127–161.
[59] S. Iwasaki, Y. Nakamura, “An analysis for the magnetization mode for high density magnetic recording,” IEEE Trans. Magn. 13 (1977) 1272–1277.
[60] R. E. Fontana, S. R. Hetzler, G. Decad, “Technology roadmap comparisons for TAPE, HDD, and NAND flash: Implications for data storage applications,” IEEE Trans. Magn. 48 (2012) 1692–1696.
[61] F. J. Owens, Physics of magnetic nanostructures (USA: John Wiley & Sons, Inc., 2015) pp. 118–121.
[62] D. D. Awschalom, D. P. DiVincenzo, “Complex dynamics of mesoscopic magnets,” Phys. Today 48 (1995) 43–48.
[63] Soshin Chikazumi, Physics of Ferromagnetism, 2nd ed. (UK: Oxford University Press, 1997).
[64] D. Weller, A. Moser, “Thermal effect limits in ultrahigh-density magnetic recording,” IEEE Trans. Magn. 35 (1999) 4423–4439.
[65] R. Jungblut, M. T. Johnson, J. aan de Stegge, A. Reinders, F. J. A. den Broeder, “Orientational and structural dependence of magnetic anisotropy of Cu/Ni/Cu sandwiches: Misfit interface anisotropy,” J. Appl. Phys. 75 (1994) 6424–6426.
[66] P. Chowdhury, P. D. Kulkarni, M. Krishnan, H. C. Barshilia, A. Sagdeo, S. K. Rai, G. S. Lodha, D. V. Sridhara Rao, “Effect of coherent to incoherent structural transition on magnetic anisotropy in Co/Pt multilayers,” J. Appl. Phys. 112 (2012) 023912.
[67] D. Litvinov, T. A. Roscamp, T. Klemmer, M. L. Wu, J. K. Howard, S. Khizroev, “Co/Pd multilayer based recording layers for perpendicular media,” MRS Proceedings 674 (2001) T3.9.
[68] D. Litvinov, J. K. Howard, S. Khizroev, H. Gong, D. Lambeth, “Reflection high-energy electron diffraction based texture determination: Magnetic thin films for perpendicular media,” J. Appl. Phys. 87 (2000) 5693.
[69] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, H. Ohno, “A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction,” Nat. Mat. 9 (2010) 721–724.
[70] B. Lu, T. Klemmer, S. Khizroev, J. K. Howard, D. Litvinov, A. G. Roy, and D. E. Laughlin, “CoCrPtTa/Ti perpendicular media deposited at high sputtering rate,” IEEE Trans. Magn. 37 (2001) 1319–1322.
[71] S. X. Wang, N. X. Sun, M. Yamaguchi, S. Yabukami, “Sandwich films: Properties of a new soft material,” Nature 407 (2000) 150–151.
[72] Y. Shiroishi, K. Fukuda, I. Tagawa, H. Iwasaki, S. Takenoiri, H. Tanaka, H. Mutoh, N. Yoshikawa, “Future options for HDD storage,” IEEE Trans. Magn. 45 (2009) 3816–3822.
[73] M. H. Kryder, “Future trends in magnetic storage technology,” Joint NAPMRC. Digest of technical papers, January 6-8, 2003, Monterey, California, USA (2003) 68.
[74] G. Ju, W. Challener, Y. Peng, M. Seigler, E. Gage, “Heat-assisted magnetic recording,” Developments in Data Storage: Materials perspective, ed. by S.N. Piramanayagam, T.C. Chong (USA: John Wiley & Sons, Inc., 2012) pp. 193–222.
[75] X. B. Wang, K. Z. Gao, H. Zhou, A. Itagi, M. Seigler, E. Gage, “HAMR recording limitations and extendibility,” IEEE Trans. Magn. 49 (2013) 686–692.
[76] Z. Cui, Nanofabrication: Principles, capabilities, and limits, 2nd ed. (Switzerland: Springer International Publishing, 2017) pp. 401–426.
[77] G. Varvaro, F. Casoli, Ultrahigh-density magnetic recording: storage materials and media designs (USA: Taylor & Francis Group, LLC, 2016) pp. 196–209 and 245–277.
[78] J.-G. Zhu, X. Zhu, Y. Tang, “Microwave assisted magnetic recording,” IEEE Trans. Magn. 44 (2008) 125–131.
[79] S. Mizukami, F. Wu, A. Sakuma, J. Walowski, D. Watanabe, T. Kubota, X. Zhang, H. Naganuma, M. Oogane, Y. Ando, T. Miyazaki, “Long-lived ultrafast spin precession in manganese alloys films with a large perpendicular magnetic anisotropy,” Phys. Rev. Lett. 106 (2011) 117201.
[80] S. Iihama, A. Sakuma, H. Naganuma, M. Oogane, T. Miyazaki, S. Mizukami, Y. Ando, “Low precessional damping observed for L10-ordered FePd epitaxial thin films with large perpendicular magnetic anisotropy,” Appl. Phys. Lett. 105 (2014) 142403.
[81] T. Thomson, B.D. Terris, “Patterned magnetic recording media: Progress and prospects,” Developments in Data Storage: Materials perspective, ed. by S.N. Piramanayagam, T.C. Chong (USA: John Wiley & Sons, Inc., 2012) pp. 256–276.
[82] M. Malloy, L. C. Litt, “Technology review and assessment of nanoimprint lithography for semiconductor and patterned media manufacturing,” J. of Micro/Nanolithography, MEMS, and MOEMS 10 (2001) 032001.
[83] R. A. Griffiths, A. Williams, C. Oakland, J. Roberts, A. Vijayaraghavan, T. Thomson “Directed self-assembly of block copolymers for use in bit patterned media fabrication,” J. Phys. D: Appl. Phys. 46 (2013) 503001.
[84] H. J. Richter, A. Lyberatos, U. Nowak, R. F. L. Evans, R. W. Chantrell, “The thermodynamic limits of magnetic recording,” J. Appl. Phys. 111 (2012) 033909.
[85] R. Wood, M. Williams, A. Kavcic, J. Miles, “The feasibility of magnetic recording at 10 terabits per square inch on conventional media,” IEEE Trans. Magn. 45 (2009) 917–923.
[86] S. Swann, “Magnetron sputtering,” Phys. Technol. 19 (1988) 67–75.
[87] D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, 2nd ed (UK: Elsevier Inc., 2010) p. 81 and pp. 237–286.
[88] H. Frey, H. R. Khan, Handbook of Thin-Film Technology (Germany: Springer, 2015) pp. 133–165.
[89] J. B. Ketterson, The physics of solids (UK: Oxford University Press, 2016) pp.129–147.
[90] B. D. Cullity, S. R. Stock, Elements of X-ray diffraction, 3rd ed. (USA: Pearson, 2014) pp. 91–242.
[91] C. Kittel, Introduction to solid state physics, 8th ed. (USA: John Wiley & Sons, 2005) pp. 23–46.
[92] T. L. Alford, L. C. Feldman, J. W. Mayer, Fundamentals of nanoscale film analysis (USA: Springer, 2007) pp. 129–151.
[93] M. Birkholz, Thin film analysis by X-ray scattering (Germany: Wiley-VCH Verlag, 2006) pp. 1–42.
[94] S. Mobilio, F. Boscherini, C. Meneghini, Synchrotron radiation: basics, methods, and applications (Germany: Springer, 2015) pp. 3–64.
[95] J. Als-Nielsen, D. McMorrow, Elements of modern X-ray physics, 2nd ed. (UK: John Wiley & Sons Ltd, 2011) pp. 239–274.
[96] S. Calvin, XAFS for everyone (USA: CRC Press, 2013) p. 135 and pp. 337–348.
[97] S. Kelly, R. Ingalls, F. Wang, B. Ravel, D. Haskel, “X-ray-absorption fine-structure study of the B1-to-B2 phase transition in RbCl,” Phys. Rev. B 57 (1998) 7543–7550.
[98] Z. L. Wang, Yi Liu, Ze Zhang, Handbook of nanophase and nanostructured materials, volume II: characterization (USA: Springer, 2003) pp. 100–123.
[99] B. Voigtländer, Scanning Probe Microscopy: Atomic Force Microscopy and Scanning Tunneling Microscopy (Germany: Springer-Verlag, 2015) pp. 157–176 and 205–222.
[100] S. Foner, “Versatile and sensitive vibrating sample magnetometer,” Rev. Sci. Instr. 30 (1959) 548–557.
[101] S. Foner, “The vibrating sample magnetometer: Experiences of a volunteer,” J. Appl. Phys. 79 (1996) 4740–4745.
[102] J. Lee, W. Shim, J.-S. Noh, W. Lee, “Design rules for nanogap-based hydrogen gas sensors,” Chem. Phys. Chem. 13 (2012) 1395–1403.
[103] X. Q. Zeng, M. L. Latimer, Z. L. Xiao, S. Panuganti, U. Welp, W. K. Kwok, T. Xu, “Hydrogen gas sensing with networks of ultrasmall palladium nanowires formed on filtration membranes,” Nano Lett. 11 (2011) 262–268.
[104] T. Shegai, P. Johansson, C. Langhammer, M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd–Au nanoantennas,” Nano Lett. 12 (2012) 2464–2469.
[105] A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11 (2011) 4366–4369.
[106] J. Henriksson, L. G. Villanueva, J. Brugger, “Ultra-low power hydrogen sensing based on a palladium-coated nanomechanical beam resonator,” Nanoscale 4 (2012) 5059–5064.
[107] A. Ollagnier, A. Fabre, T. Thundat, E. Finot, “Activation process of reversible Pd thin film hydrogen sensors,” Sens. Actuators B Chem. 186 (2013) 258–262.
[108] C. S. Chang, M. Kostylev, E. Ivanov, “Metallic spintronic thin film as a hydrogen sensor,” Appl. Phys. Lett. 102 (2013) 142405.
[109] M. Ramanathan, G. Skudlarek, H. H. Wang, S. B. Darling, “Crossover behavior in the hydrogen sensing mechanism for palladium ultrathin films,” Nanotechnology 21 (2010) 125501.
[110] T. Kiefer, F. Favier, O. Vazquez-Mena, G. Villanueva, J. Brugger, “A single nanotrench in a palladium microwire for hydrogen detection,” Nanotechnology 19 (2008) 125502.
[111] V. R. Khalap, T. Sheps, A. A. Kane, P. G. Collins, “Hydrogen sensing and sensitivity of palladium-decorated single-walled carbon nanotubes with defects,” Nano Lett. 10 (2010) 896–901.
[112] B. Liu, D. Cai, Y. Liu, H. Li, C. Weng, G. Zeng, Q. Li, T. Wang, “High-performance room-temperature hydrogen sensors based on combined effects of Pd decoration and Schottky barriers,” Nanoscale 5 (2013) 2505–2510.
[113] L. G. Villanueva, F. Fargier, T. Kiefer, M. Ramonda, J. Brugger, F. Favier, “Highly ordered palladium nanodot patterns for full concentration range hydrogen sensing,” Nanoscale 4 (2012) 1964–1967.
[114] F. Yang, D. K. Taggart, R. M. Penner, “Fast, sensitive hydrogen gas detection using single palladium nanowires that resist fracture,” Nano Lett. 9 (2009) 2177–2182.
[115] F. Yang, S. C. Kung, M. Cheng, J. C. Hemminger, R. M. Penner, “Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires,” ACS Nano 4 (2010) 5233–5244.
[116] J. M. Baik, M. H. Kim, C. Larson, C. T. Yavuz, G. D. Stucky, A. M. Wodtke, M. Moskovits, “Pd-sensitized single vanadium oxide nanowires: highly responsive hydrogen sensing based on the metal−insulator transition,” Nano Lett. 9 (2009) 3980–3984.
[117] D. Yang, L. Valentín, J. Carpena, W. Otaño, O. Resto, L. F. Fonseca, “Temperature-activated reverse sensing behavior of Pd nanowire hydrogen sensors,” Small 9 (2013) 188–192.
[118] F. E. Annanouch, Z. Haddi, M. Ling, F. Di Maggio, S. Vallejos, T. Vilic, Y. Zhu, T. Shujah, P. Umek, C. Bittencourt, C. Blackman, E. Llobet, “Aerosol-assisted CVD-grown PdO nanoparticle-decorated tungsten oxide nanoneedles extremely sensitive and selective to hydrogen,” Appl. Mater. Interfaces 8 (2016) 10413–10421.
[119] S. Choudhury, C. A. Betty, K. Bhattacharyya, V. Saxena, D. Bhattacharya, “Nanostructured PdO thin film from Langmuir−Blodgett precursor for room-temperature H2 gas sensing,” ACS Appl. Mater. Interfaces 8 (2016) 16997–17003.
[120] Y. Qin, A. U. Alam, S. Pan, M. M. R. Howlader, R. Ghosh, P. R. Selvaganapathy, Y. Wu, M. J. Deen, “Low-temperature solution processing of palladium/palladium oxide films and their pH sensing performance,” Talanta 146 (2016) 517–524.
[121] Y. Qin, A. U. Alam, M. M. R. Howlader, N.-X. Hu, M. J. Deen, “Inkjet printing of a highly loaded palladium ink for integrated, low-cost pH sensors,” Adv. Funct. Mater. 26 (2016) 4923–4933.
[122] S. Wu, H. Zhou, M. Hao, X. Wei, S. Li, H. Yu, X. Wang, Z. Chen, “Fast response hydrogen sensors based on anodic aluminum oxide with pore-widening treatment,” Appl. Surf. Sci. 380 (2016) 47–51.
[123] X.-Q. Zeng, Y.-L. Wang, H. Deng, M. L. Latimer, Z.-L. Xiao, J. Pearson, T. Xu, H.-H. Wang, U. Welp, G. W. Crabtree, W.-K. Kwok, “Networks of ultrasmall Pd/Cr nanowires as high performance hydrogen sensors,” ACS Nano 5 (2011) 7443–7452.
[124] M. Zhao, M. H. Wong, C. W. Ong, “Achievement of controlled resistive response of nanogapped palladium film to hydrogen,” Appl. Phys. Lett. 107 (2015) 033108.
[125] E. Menumerov, B. A. Marks, D. A. Dikin, F. X. Lee, R. D. Winslow, S. Guru, D. Sil, E. Borguet, P. Hutapea, R. A. Hughes, S. Neretina, “Sensing hydrogen gas from atmospheric pressure to a hundred parts per million with nanogaps fabricated using a single-step bending deformation,” ACS Sens. 1 (2016) 73–80.
[126] W. Kim, B. Jang, H.-S. Lee, W. Lee, “Reliability and selectivity of H2 sensors composed of Pd Film nanogaps on an elastomeric substrate,” Sens. Actuators B Chem. 224 (2016) 547–551.
[127] K. L. Tsang, C. H. Lee, Y. C. Jean, T. E. Dann, J. R. Chen, K. L. D'Amico, T. Oversluizen, “Wiggler x‐ray beamlines at Synchrotron Radiation Research Center,” Rev. Sci. Instrum. 66 (1995) 1812–1814.
[128] V. K. Pecharsky, P. Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials (USA: Springer Science & Business Media LLC, 2005) pp. 173–181.
[129] G. Renaud, A. Barbier, O. Robach, “Growth, structure, and morphology of the Pd/MgO(001) interface: Epitaxial site and interfacial distance,” Phys. Rev. B 60 (1999) 5872–5882.
[130] C. W. Ong, Y. M. Tang, “Sputtering pressure dependence of hydrogen-sensing effect of palladium films,” J. Mater. Res. 24 (2009) 1919–1927.
[131] J. A. Eastman, L. J. Thompson, B. J. Kestel, “Narrowing of the palladium-hydrogen miscibility gap in nanocrystalline palladium,” Phys. Rev. B 48 (1993) 84–92.
[132] S. M. Kozlov, H. A. Aleksandrov, J. Goniakowski, K. M. Neyman, “Effect of MgO(100) support on structure and properties of Pd and Pt nanoparticles with 49-155 atoms,” J. Chem. Phys. 139 (2013) 084701.
[133] S. M. Kozlov, H. A. Aleksandrov, K. M. Neyman, “Adsorbed and subsurface absorbed hydrogen atoms on bare and MgO(100)-supported Pd and Pt nanoparticles,” J. Phys. Chem. C 118 (2014), 15242–15250.
[134] T. Kiefer, L. G. Villanueva, F. Fargier, F. Favier, J. Brugger, “The transition in hydrogen sensing behavior in noncontinuous palladium films,” Appl. Phys. Lett. 97 (2010) 121911.
[135] T. Xu, M. P. Zach, Z. L. Xiao, D. Rosenmann, U. Welp, W. K. Kwok, G. W. Crabtree, “Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films,” Appl. Phys. Lett. 86 (2005) 203104.
[136] S.-R. Jian, H.-W. Chang, Y.-W. Wang, H.-H. Yeh, J.-Y. Juang, “Effects of post-annealing on the structural and nanomechanical properties of sputter-deposited FePd thin films,” J. Alloys Compd. 648 (2015) 980−985.
[137] C. Clavero, J. M. García-Martín, J. L. Costa Krämer, G. Armelles, A. Cebollada, Y. Huttel, R. A. Lukaszew, A. J. Kellock, “Temperature and thickness dependence at the onset of perpendicular magnetic anisotropy in FePd thin films sputtered on MgO(001),” Phys. Rev. B 73 (2006) 174405.
[138] C. H. Hsiao, Y. D. Dao, S. C. Lo, H. W. Chang, C. H. Ouyang, “Domain wall pinning on strain relaxation defects (stacking faults) in nanoscale FePd (001)/MgO thin films,” Appl. Phys. Lett. 107 (2015) 142407.
[139] N. Sakuma, T. Ohshima, T. Shoji, Y. Suzuki, R. Sato, A. Wachi, A. Kato, Y. Kawai, A. Manabe, T. Teranishi, “Exchange coupling interaction in L10-FePd/α-Fe nanocomposite magnets with large maximum energy products,” ACS Nano 5 (2011) 2806−2814.
[140] Y. Yu, K. Sun, Y. Tian, X.-Z. Li, M. J. Kramer, D. J. Sellmyer, J. E. Shield, S. Sun, “One-pot synthesis of urchin-like FePd−Fe3O4 and their conversion into exchange-coupled L10−FePd−Fe nanocomposite magnets,” Nano Lett. 13 (2013) 4975−4979.
[141] S. Iihama, A. Sakuma, H. Naganuma, M. Oogane, S. Mizukami, Y. Ando, “Influence of L10 order parameter on Gilbert damping constants for FePd thin films investigated by means of time-resolved magneto-optical Kerr effect,” Phys. Rev. B 94 (2016) 174425.
[142] H. Naganuma, G. Kim, Y. Kawada, N. Inami, K. Hatakeyama, S. Iihama, K. M. N. Islam, M. Oogane, S. Mizukami, Y. Ando, “Electrical detection of millimeter-waves by magnetic tunnel junctions using perpendicular magnetized L10‑FePd free layer,” Nano Lett. 15 (2015) 623−628.
[143] D. H. Wei, Y. D. Yao, “Controlling microstructure and magnetization process of FePd (001) films by staged thermal modification,” Appl. Phys. Lett. 95 (2009) 172503.
[144] J. R. Skuza, C. Clavero, K. Yang, B. Wincheski, R. A. Lukaszew, “Microstructural, magnetic anisotropy, and magnetic domain structure correlations in epitaxial FePd thin films with perpendicular magnetic anisotropy,” IEEE Trans. Magn. 46 (2010) 1886−1889.
[145] O. Yabuhara, M. Ohtake, K. Tobari, T. Nishiyama, F. Kirino, M. Futamoto, “Structural and magnetic properties of FePd and CoPd alloy epitaxial thin films grown on MgO single-crystal substrates with different orientations,” Thin Solid Films 519 (2011) 8359−8362.
[146] M. N. I. Khan, N. Inami, H. Naganuma, Y. Ohdaira, M. Oogane, Y. Ando, “Promotion of L10 ordering of FePd films with amorphous CoFeB thin interlayer,” J. Appl. Phys. 111 (2012) 07C112.
[147] J. Ko, T. Bae, J. Hong, “Effect of a change in thickness on the structural and perpendicular magnetic properties of L10 ordered FePd ultra-thin films with (001) texture,” J. Appl. Phys 112 (2012) 113919.
[148] Y. Tokuoka, Y. Sedo, T. Kato, S. Iwata, “Effect of Ag addition to L10 FePt and L10 FePd films grown by molecular beam epitaxy,” J. Appl. Phys. 115 (2014) 17B716.
[149] M. Ohtake, A. Itabashi, M. Futamoto, F. Kirino, N. Inaba, “Crystal orientation, order degree, and surface roughness of FePd-Alloy film formed on MgO(001) substrate,” IEEE Trans. Magn. 51 (2015) 2100904.
[150] D. Ravelosona, C. Chappert, H. Bernas, D. Halley, Y. Samson, A. Marty, “Chemical ordering at low temperatures in FePd films,” J. Appl. Phys. 91 (2002) 8082.
[151] C. F. Wang, K. M. Kuo, C. Y. Lin, G. Chern, “Magnetic anisotropy in FexPd1-x (x = .30, .44, .67, .78) alloy film grown on SrTiO3(001) and MgO(001) by molecular beam epitaxy,” Solid State Commun. 149 (2009) 1523−1526.
[152] Y. Endo, Y. Yamanaka, Y. Kawamura, M. Yamamoto, “Formation of L10-type ordered FePd phase in multilayers composed of Fe and Pd,” Jpn. J. Appl. Phys., Part 1 44 (2005) 3009−3014.
[153] T. Shima, T. Moriguchi, S. Mitani, K. Takanashi, “Low-temperature fabrication of L10 ordered FePt alloy by alternate monatomic layer deposition,” Appl. Phys. Lett. 80 (2002) 288.
[154] S. C. Chou, C. C. Yu, Y. Liou, Y. D. Yao, “Annealing effect on the Fe/Pt multilayers grown on Al2O3 (0001) substrates,” J. Appl. Phys. 95 (2004) 7276.
[155] Y. C. Wu, L. W. Wang, C. H. Lai, “Low-temperature ordering of (001) granular FePt films by inserting ultrathin SiO2 layers,” Appl. Phys. Lett. 91 (2007) 072502.
[156] N. I. Vlasova, N. M. Kleinerman, V. V. Serikov, A. G. Popov, “Mössbauer study of fine structure features of equiatomic FePd alloy after severe plastic deformation and ordering annealing,” J. Alloys Compd. 583 (2014) 191−197.
[157] D. Halley, A. Marty, P. Bayle-Guillemaud, B. Gilles, J. P. Attane, Y. Samson, “Chemical ordering in magnetic FePd/Pd(001) epitaxial thin films induced by annealing,” Phys. Rev. B 70 (2004) 174438.
[158] X. Ma, P. He, L. Ma, G. Y. Guo, H. B. Zhao, S. M. Zhou, G. Lüpke, “Spin-orbit interaction tuning of perpendicular magnetic anisotropy in L10 FePdPt films,” Appl. Phys. Lett. 104 (2014) 192402.
[159] J. A. Christodoulides, P. Farber, M. Daniil, H. Okumura, G. C. Hadjipanayis, V. Skumryev, A. Simopoulos, D. Weller, “Magnetic, structural and microstructural properties of FePt/M (M = C; BN) granular films,” IEEE Trans. Magn. 37 (2001) 1292−1294.
[160] N. Braidy, Y. L. Bouar, M. Fèvre, “Determination of the long-range order parameter from the tetragonality ratio of L10 alloys,” Phys. Rev. B 81 (2010) 054202.
[161] M. Futamono, M. Nakamura, M. Ohtake, N. Inaba, T. Shimotsu, “Growth of L10-ordered crystal in FePt and FePd thin films on MgO(001) substrate,” AIP Advances 6 (2016) 085302.
[162] M. Krupinski, M. Perzanowski, A. Polit, Y. Zabila, A. Zarzycki, A. Dobrowolska, M. Marszalek, “X-ray absorption fine structure and x-ray diffraction studies of crystallographic grains in nanocrystalline FePd:Cu thin films,” J. Appl. Phys. 109 (2011) 064306.
[163] B. Ravel, M. Newville, “ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT,” J. Synchrotron Rad. 12 (2005) 537–541.
[164] M. Birkholz, Thin film analysis by X-ray scattering (Germany: Wiley-VCH Verlag GmbH and Co. KGaA, 2006) pp 122−130.
[165] C. M. Fang, M. A. van Huis, B. J. Thijsse, H. W. Zandbergen, “Stability and crystal structures of iron carbides: A comparison between the semi-empirical modified embedded atom method and quantum-mechanical DFT calculations,” Phys. Rev. B 85 (2012) 054116.
[166] X. Sang, A. Kulovits, J. Wiezorek, “Simultaneous determination of highly precise Debye–Waller factors and multiple structure factors for chemically ordered tetragonal FePd,” Acta Cryst. A 67 (2011) 229−239.
[167] T. Ichitsubo, K. Tanaka, “Single-crystal elastic constants of disordered and ordered FePd,” J. Appl. Phys. 96 (2004) 6220−6223.
[168] T.K. Sham, “L-edge x-ray-absorption systematics of the noble metals Rh, Pd, and Ag and the main-group metals In and Sn: A study of the unoccupied density of states in 4d elements,” Phys. Rev. B 31 (1985) 1888−1902.
[169] V. Kapaklis, P. Poulopoulos, F. Wilhelm, N. Jaouen, A. Rogalev, C. Politis, “Near-edge x-ray absorption fine-structure fingerprints of bulk-amorphous and nanostructured Pd-based alloys,” J. Appl. Phys. 98 (2005) 044319.
[170] A. Bzowski, T. K. Sham, “Pd-Ti bimetallics: a study of the electronic structure using x-ray photoelectron spectroscopy and x-ray-absorption near-edge structure,” Phys. Rev. B 48 (1993) 7836−7840.
[171] Y. S. Lee, C. N. Whang, Y. Jeon, B. S. Choi, T. J. Han, J. J. Woo, M. Croft, “Study of the L3 edges of ion-beam-mixed Pd-Cu alloys by X-ray absorption spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 129 (1997) 387−391.
[172] I. Coulthard, T. K. Sham, “Charge redistribution in Pd-Ag alloys from a local perspective,” Phys. Rev. Lett. 77 (1996) 4824−4827.