簡易檢索 / 詳目顯示

研究生: 黃瑋巧
Huang, Wei Chiao
論文名稱: 雙酚A對於DNA甲基化之影響
Characteristics of bisphenol A affecting DNA methylation
指導教授: 莊淳宇
Chuang, Chun-Yu
口試委員: 莊淳宇
張建文
林靖愉
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 137
中文關鍵詞: 雙酚A雌激素受體脂瘦素 、脂聯素DNA甲基化基質金屬蛋白酶13HOXA10
外文關鍵詞: BPA, estrogen receptor, leptin, adiponectin, DNA methylation, MM13, HOXA10
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙酚A (bisphenol A; BPA)是一種常見環境荷爾蒙,用做塑膠之塑化劑,具競爭雌激素受體(estrogen receptor; ER)之能力而影響人體內分泌,為內分泌干擾物質(endocrine disruptor)。BPA為脂溶性,有生物累積之特性,會囤積在人體脂肪細胞(adipose cells)中,可能影響脂肪激素(adipokines)分泌和能量代謝之恆定性而造成代謝性疾病。DNA甲基化(DNA methylatiom)為一種不改變基因序列而影響基因調控之方式。有文獻指出,BPA會造成異常基因甲基化,影響染色體的穩定性及基因表現,增加導致乳癌和子宮內膜癌的風險。
    本論文研究目的有二,一、探討BPA對人類乳癌MCF-7細胞之存活率和脂肪激素(adipokines)-脂瘦素(leptin)和脂聯素(adiponectin)基因表現量之影響,及造成DNA序列甲基化之評估;二、探討懷孕婦女、子宮內膜增生婦女和不孕症婦女血液中BPA濃度和DNA甲基化之差異。實驗首先以不同濃度BPA (1, 10, 100, 103, 104, 105 nM)處理MCF-7細胞,以MTT assay (3-(4,5-dimethylthiazolyl -2)-2,5-diphenyltetrazolium bromide)檢測細胞存活率,以即時定量聚合連鎖反應(real-time quantitative polymerase reaction)檢測adiponectin及leptin之基因表現量。結果顯示1 nM之BPA會促進細胞之存活率, 104和105 nM之BPA會抑制細胞之存活率。此外,BPA會導致細胞週期S phase時期延長(10和105 nM)或縮短(103 nM)。 BPA (10、104和105 nM)會降低ER□基因表現並誘導ER□的表現。低劑量之BPA (10 nM)增加adiponectin基因表現、降低leptin基因表現;在103 nM BPA處理下,發現adiponectin基因表現上升但leptin之表現並無顯著降低;高劑量BPA (105 nM)增加adiponectin和leptin之基因表現。萃取全基因組DNA (genomic DNA),利用sodium bisulfite處理後,以甲基化晶片(Illumina Infinium HumanMethylation27 BeadChip)偵測DNA甲基化位點,探究BPA暴露對於基因體甲基化之差異性及分布,以及影響基因之功能性分析,進而篩選受甲基化調控之基因。利用GO term分析甲基化晶片資料具有beta value及M value顯著差異的基因(n=22),其與代謝、成長以及神經傳遞有關。其中,LIPE (hormone-sensitive lipase)是一參與代謝調控之基因,會受到adiponectin和leptin之影響,在Illumina甲基化測驗中發現BPA (10和105 nM)會導致LIPE去甲基化。基質金屬蛋白酶(matrix metalloproteinase; MMP)為鋅依賴之蛋白水解酵素,參與組織重塑,其啟動子活性受ER調控。本研究發現BPA會使MMP 13基因啟動子去甲基化,伴隨著mRNA表現減少。此外,在婦女樣本中也發現血液中BPA濃度和MMP13表現呈現負相關,可能藉由去甲基化所調控。
    利用甲基化特異性PCR (methylation specific PCR; MSP)偵測婦女HOXA10 (homeobox A10)之甲基化程度和HOXA10 mRNA表現量之相關性。HOXA10基因為調控生長發育的重要因子,在子宮內扮演重要角色。懷孕婦女之HOXA10甲基化和mRNA表現呈負相關(r = -0.657),而子宮內膜增生婦女之HOXA10甲基化和基因表現呈正相關(r = 0.8)。由本研究結果得知,BPA會導致異常之基因表現,其可能藉由甲基化及其他外基因體機制所調控。


    Bisphenol A (BPA) is a common environmental estrogen as an endocrine disruptor to mimic endogenous estrogen 17□-estradiol by binding to estrogen receptor. As lipophilicity and bioaccumulation, BPA has the potency to accumulate in adipose tissue and interfere with adipokin secretion and homeostasis of energy metabolism. BPA accumulates in adipose tissue might influence the gene expression of adiponectin and leptin leading to induce metabolic diseases. Due to common use for plastics products, human would expose low doses of BPA in daily life. Otherwise, BPA could cause abnormal DNA methylation affecting the stability of chromosome and gene expression to increase the risk of breast cancer and endometrial cancer. Thus, the purpose of this study was to investigate whether BPA caused cytotoxicity and gene expression in human breast cancer MCF-7 cells, and to explore the difference in DNA methylation and the BPA levels among pregnant women, women with endometrial hyperplasia (EH) and infertile women. The cell proliferation was increased in the 1 nM BPA treatment and attenuated at higher doses of BPA (104 and 105 nM). BPA changed the duration of S phase in cell cycle that prolonged at 10 and 105 nM BPA and shortened at 103 nM BPA. The results of real-time PCR showed that BPA treatment (10, 104 and 105 nM) attenuated the mRNA expression of ER□ and increased the expression of ER□. With the treatment of 103 nM BPA, the gene expression of ER□ was increased as well as ER□. Low-dose of BPA treatment (10 nM) increased the gene expression of adiponectin and decreased the expression of leptin. With the treatment of 105 nM BPA, MCF-7 cells had the increased expression of adiponectin and leptin. This study explored the distribution of DNA methylation and gene ontology to select candidate genes after BPA treatment using Illumina Infinium HumanMethylation27 BeadChip. Twenty-two genes selected from the difference of beta and M value were categorized into metabolic function, development and nervous process in analysis of GO term. LIPE (hormone-sensitive lipase) involved in the metabolic process was hypomethylated after BPA treatment (10 and 105 nM). MMP13 is a matrix metalloproteinase for tissue remodeling and its activity of promoter is regulated by ER. The results of this study showed that MMP13 had the hypomethylation level after BPA treatment in accompany with the low level of MMP13 mRNA expression.
    Homeobox A10 (HOXA10) plays an important role in endometrium development. MSP (methyl specific PCR) was used in this study to determine the methylation level of HOXA10. This study found that a negative correlation between the methylation level of HOXA10 and its mRNA expression in pregnant women (r = -0.657), and a positive correlation in EH women (r = 0.8). In conclusion, these results indicated that BPA may influence the gene expression underlying DNA methylation and other epigenetic modulation.

    Content 中文摘要 ........................................................................................................................... I ABSTRACT .................................................................................................................... III Chapter 1 Introduction ........................................................................................... 1 Chapter 2 Paper review .......................................................................................... 3 2.1 BPA ........................................................................................................................... 3 2.1.1 Biochemical properties of BPA ................................................................... 3 2.1.2 U-shape response of BPA ............................................................................. 5 2.1.3 BPA as an endocrine disruptor ................................................................... 5 2.1.4 Mechanisms of BPA action .......................................................................... 6 2.2 Bisphenol A affects on adipocytes ........................................................................ 13 2.2.1 Adiponectin ................................................................................................. 14 2.2.2 Leptin ........................................................................................................... 14 2.3 Correlation of endometrial diseases between BPA and adipokines .................. 15 2.3.1 Hox genes ..................................................................................................... 16 2.4 Methylation ............................................................................................................ 16 2.4.1 Methylation and BPA ................................................................................. 18 2.4.2 Methylation and Adipocytes ...................................................................... 20 2.4.3 Methylation and endometrial disease ....................................................... 20 2.5 Definition of Beta value and M value .................................................................. 21 Chapter 3 Material and method ........................................................................... 24 3.1 Chemicals ............................................................................................................... 24 3.2 Cell culture ............................................................................................................. 24 3.3 MTT assay .............................................................................................................. 25 3.4 Flow cytometric assay for cell cycle ..................................................................... 25 VI 3.5 Study subjects ......................................................................................................... 26 3.6 Sample preparation of plasma for BPA determination ...................................... 26 3.7 Chromatographic system and conditions ............................................................ 26 3.8 RNA extraction ...................................................................................................... 27 3.9 Reverse transcription polymerase chain reaction (PCR) and quantitative real-time PCR ........................................................................................................ 28 3.10 Genomic-DNA extracted from MCF-7 cell and Bisulfite conversion ............... 29 3.11 DNA methylation profiling using Infinium human 27K BeadArrays .............. 30 3.12 Methylation Specific PCR ..................................................................................... 31 3.13 Statistical analysis .................................................................................................. 31 3.13.1 SPSS 31 3.13.2 Gene Expression Profile Analysis ................................................................ 32 3.13.3 GO analysis ................................................................................................... 33 Chapter 4 Result ................................................................................................... 34 4.1 Cytotoxicity and effect on gene expression in exposure to BPA ....................... 34 4.1.1 Cytotoxicity of MCF-7 cells in exposure to BPA ......................................... 34 4.1.2 Cell cycle arrest in exposure to BPA ............................................................ 34 4.1.3 Gene expression of estrogen receptors (ER) in exposure to BPA ................ 34 4.1.4 Gene expression of adipokines in exposure to BPA ..................................... 35 4.1.5 ER ratio and adipokine ratio in exposure to BPA ......................................... 35 4.2 Genomic-wide methylation pattern in exposure to BPA .................................... 35 4.2.1 Histograms of beta value and M value ......................................................... 35 4.2.2 Beta value of the Illumina data ..................................................................... 35 4.2.3 TSS and the methylation level ...................................................................... 38 4.2.4 Methylation level and gene expression of MMP13 ...................................... 40 VII 4.2.5 GO terms analysis ......................................................................................... 42 4.3 Correlation between plasma BPA level, gene expression and methylation level of a specific CpG site in women with endometrial disease ................................ 43 4.3.1 Characteristics of demography among pregnant women, infertile women and EH women ............................................................................................. 43 4.3.2 BPA level in pregnant women, infertile women and EH women ................. 43 4.3.3 Gene expression between pregnant women and EH women ........................ 43 4.3.4 Correlation between BPA level and gene expression between pregnant women and EH women ................................................................................. 44 4.3.5 Gene-gene corrletation ................................................................................. 44 4.3.6 Crude and adjusted ORs for pregnant women and EH women .................... 44 4.3.7 Correlation between plasma BPA concentration, gene expression and methylation level of HOXA10. .................................................................... 45 4.3.8 MMP13 expression and the correlation with BPA in EH women and pregnant women ........................................................................................... 46 Chapter 5 Discussion ........................................................................................... 47 5.1 BPA exposure mediated cytotoxicity and abnormal gene expression .............. 47 5.2 Genomic-wide methylation pattern in MCF-7 cells exposed to BPA ............... 48 5.2.1 Methylation pattern and its relevant to the distance from TSS in exposure to BPA 48 5.3 Correlation between plasma BPA level, gene expression and methylation level in women with endometrial disease ..................................................................... 57 5.4 MMP13 as a marker for EH women .................................................................... 60 5.5 Gene expression of MMP13 and HOXA10 might be mediated by methylation and other epigenetic modulator ........................................................................... 61 VIII Chapter 6 Conclusion ........................................................................................... 63 Chapter 7 Future Work ......................................................................................... 65 REFERENCE .................................................................................................................. 68 Figure and Table .............................................................................................................. 83 IX Index for Figures Fig. 1 Flow chart of this study ........................................................................................ 2 Fig. 2 BPA structure ........................................................................................................ 4 Fig. 3 In response to high temperature, acidic or basic condition, BPA might release from polycarbonate due to hydrolysis of the ester bond. .................. 4 Fig. 4 Methylation on cytosine ................................................................................... 18 Fig. 5 Guideline for selecting the genes that changed the methylation level after BPA treatment. ................................................................................................ 36 Fig. 6 Transduction pathway regulated by PKA mediated the expression of adiponectin, leptin and LIPE. PKA downstream signal was involved with the epigenetic modulators (HDAC and microRNA). .................................... 64 Fig. 7 Illustration of the findings and future work in this study for MCF-7 cells with BPA treatment. ........................................................................................ 66 Fig. 8 Illustration of the findings and future work in this study for human study subjects. ............................................................................................................ 67 Fig. 9 Cytotoxicity of BPA treatments in MCF-7 cells. (A) standard curve of MMT assay, (B) cell viability in different doses of BPA.. ............................. 83 Fig. 10 Cell cycle of MCF-7 cells treated with different doses of BPA. (A) control, (B) 105 nM BPA, and (C) the percentage of G1,G2 and S phase in each BPA treatment group ....................................................................................... 84 Fig. 11 BPA exposure influenced the gene expression in MCF-7 cells. The gene expression of (A) ERα, (B) ERβ, (C) adiponectin and (D) leptin ................ 86 Fig. 12 Ratios of ER and adipokines changed after BPA treatment in MCF-7 cells. (A) ERα/ERβ and (B)adiponectin/leptin ....................................................... 87 Fig. 13 Histograms of beta value (left) and M value (right) from 27,577 specific X CpG sites (A) DMSO, (B) 10 nM BPA, (C) 103 nM BPA, and (D) 105 nM BPA. .................................................................................................................. 89 Fig. 14 Different ΔBeta among the BPA treatment groups and the control group. (A) the intersection of ΔBeta > 0.08 among 10, 103 and 105 nM BPA treatment groups, (B) the heatmap and clustering analysis of the BPA treatment groups, and (C) gene list of ΔBeta clustering ................................................ 91 Fig. 15 The filtered genes of different M-value among BPA treatment groups and the control group. (A) the intersection of Δbeta > 0.08 among 10, 103 and 105 nM BPA treatment groups, (B) the heatmap and clustering analysis of the BPA treatment groups, and (C) gene list of ΔBeta clustering ................ 93 Fig. 16 (A) Distribution of genes with different methylation level on each chromosome. (B) methylation level calculated by beta value. (C) Methylaiton level calculated by M value ....................................................... 96 Fig.17 Distribution of Δbeta value in the 669 specific genes on each chromosome among treatment groups of BPA. (A) distribution of ΔBeta values located in the CpG island, (B) distribution of ΔBeta value located in the non-CpG island, and (C) genes with the significant ΔBeta value on chromosome 20 and 21 ................................................................................................................ 98 Fig. 18 Methylation level of CpG and non-CpG sites in the specific 94 genes on each chromosome. (A) mean Δbeta value and (B) mean M value of each chromosome. .................................................................................................... 99 Fig. 19 Significant M-value difference after BPA treatment in 141 specific genes. (A) CpG site located at the non-CpG island, and (B) CpG site located at the CpG island ...................................................................................................... 100 Fig. 20 High methylation changes of CpG sites in analysis of Beta value and M XI value. (A)the intersection of M value and beta value, (B) the methylation level of M value in each chromosome, (C) the methyaltion changes after BPA treatment in each chromosome ............................................................ 102 Fig. 21 Schematic diagram of the specific 22 genes on each chromosome. (A) number of genes located on each chromosome, and (B) position of each genes located on the chromosome. ............................................................... 104 Fig. 22 BPA influence the methylation level on chromosome presented more than one genes. The methylation difference were selected by (A) ΔBeta > 0.08 in all the BPA treatment groups. (B) The intersection of M-value (141 genes) and ΔBeta > 0.08 (94 genes). All of the offered methylation CpG sites were located in the non-CpG island ...................................................................... 106 Fig. 23 Chromosome loci, CpG site, TSS and mRNA expression level of MMP13 gene. (A) Schematic diagram of CpG site and TSS in MMP13. (B) Correlation between TSS and btea value. (C) Correlation between TSS and M value (D) Association between mRNA expression and beta value of MMP13 ........................................................................................................... 109 Fig. 24 Chromosome loci, CpG site, MSP primers, Illumina probe, and mRNA expression level of HOXA10 gene. (A) Schematic diagram of MSP primers and Illumina probe of HOXA10 gene. (B) mRNA expresison and Illumina beta value. (C) MSP data and Illumina data ............................................... 110 Fig. 25 M value (A) and ΔBeta value of chromosome loci, distance form CpG site to the TSS and the methyaliton level ................................................................ 112 Fig. 26 Distribution of plasma BPA level among pregnant woman, infertile woman and EH woman. ............................................................................................. 113 Fig. 27 Gene expression of (A) adiponectin, (B) leptin, and (C) HOXA10) in XII pregnant women and EH women ................................................................. 114 Fig. 28 Methylation level of HOXA10 and (A) plasma BPA level, (B) HOXA10 mRNA expression, and (C) box plot for pregnant women, EH women and infertile women ....................................................................................... 116 Fig. 29 The correlation between methylation and BPA concentration in pregnant woment, EH women and infertility women ................................................. 117 Fig. 30 The correlation between methylation and.mRNA expression of HOXA10 among pregnant women, women with EH and infertility .......................... 118 Fig. 31 The distribution of MMP13 mRNA expression between EH woment and (A) pregnant woment and (B) pregnant woment with low and high BPA levels. (C) The correlation between BPA and MMP13 mRNA expression…………………………………………………………………...120 Index for Tables Table 1 Physiological effects on MCF-7 cells in exposure to BPA ......................... 12 Table 2 BPA exposure influences the methylation level .......................................... 19 Table 3 List of the function of these microRNAs influenced by BPA exposure .... 62 Table 4 Correlation of CpG distance from TSS and methylation level in chromosomes .............................................................................................. 107 Table 5 The GO term clustering of the 94 genes selected by beta value .............. 121 Table 6 GO term clustering of the 141 genes selected by M value ....................... 125 Table 7 The function of the 22 genes selected by the combination of M-value and Beta value analysis ..................................................................................... 128 Table 8 The cluster of the 22 genes GO terms selected by the combination of M-value and Beta value analysis. ............................................................. 131 Table 9 The location of CpG sites on the CpG island in specific genes ................ 132 Table 10 Characteristics of pregnant women, EH woman and infertility woman and the correlation coefficient among gene expressions ........................ 133 Table 11 Correlation coefficient among BPA and gene expressions ..................... 134 Table 12 Unadjusted and adjusted odd ratios of plasma BPA concentration and several genes expression between EH women and pregnant women .... 135 Table 13 The correlation among methylation and gene expression of the HOXA10 and BPA concentration compared between each groups of women ...... 136 Table 14 Primer sequence for real-time PCR ......................................................... 137 Table 15 Primer sequence for MSP ......................................................................... 137

    Achari, Y., T. Lu, et al. (2009). "Distinct roles for AF-1 and -2 of ER-alpha in regulation of MMP-13 promoter activity." Biochim Biophys Acta 1792(3): 211-220.
    Ahola, T. M., N. Alkio, et al. (2002). "Progestin and G protein-coupled receptor 30 inhibit mitogen-activated protein kinase activity in MCF-7 breast cancer cells." Endocrinology 143(12): 4620-4626.
    Ahola, T. M., T. Manninen, et al. (2002). "G protein-coupled receptor 30 is critical for a progestin-induced growth inhibition in MCF-7 breast cancer cells." Endocrinology 143(9): 3376-3384.
    Ahola, T. M., S. Purmonen, et al. (2002). "Progestin upregulates G-protein-coupled receptor 30 in breast cancer cells." Eur J Biochem 269(10): 2485-2490.
    Akbas, G. E., J. Song, et al. (2004). "A HOXA10 estrogen response element (ERE) is differentially regulated by 17 beta-estradiol and diethylstilbestrol (DES)." J Mol Biol 340(5): 1013-1023.
    Alonso-Magdalena, P., O. Laribi, et al. (2005). "Low doses of bisphenol A and diethylstilbestrol impair Ca2+ signals in pancreatic alpha-cells through a nonclassical membrane estrogen receptor within intact islets of Langerhans." Environ Health Perspect 113(8): 969-977.
    Altucci, L., P. Bontempo, et al. (2009). "Molecular analysis of the apoptotic effects of BPA in acute myeloid leukemia cells." J Trans Med 7: 48
    Andersen, H. R., A. M. Andersson, et al. (1999). "Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals." Environ Health Perspect 107 Suppl (1): 89-108.

    Ariazi, E. A. and V. C. Jordan (2006). "Estrogen-related receptors as emerging targets in cancer and metabolic disorders." Current Topics in Med Chem 6(3): 203-215.
    Ascenzi, P., A. Bocedi, et al. (2006). "Structure-function relationship of estrogen receptor alpha and beta: impact on human health." Mol Aspects Med 27(4): 299-402.
    Ashizawa, N., T. Yahata, et al. (2010). "Serum leptin-adiponectin ratio and endometrial cancer risk in postmenopausal female subjects." Gynecol Oncol 119(1): 65-69.
    Avissar-Whiting, M., K. R. Veiga, et al. (2010). "Bisphenol A exposure leads to specific microRNA alterations in placental cells." Reprod Toxicol 29(4): 401-406.
    Babiker, F. A., L. J. De Windt, et al. (2002). "Estrogenic hormone action in the heart: regulatory network and function." Cardiovasc Res 53(3): 709-719.
    Bagot, C. N., P. J. Troy, et al. (2000). "Alteration of maternal Hoxa10 expression by in vivo gene transfection affects implantation." Gene Ther 7(16): 1378-1384.
    Ball, M. P., J. B. Li, et al. (2009). "Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells." Nat Biotechnol 27(4): 361-368.
    Ben-Jonathan, N., E. R. Hugo, et al. (2009). "Effects of bisphenol A on adipokine release from human adipose tissue: Implications for the metabolic syndrome." Mol Cell Endocrinol 304(1-2): 49-54.
    Block, K., A. Kardana, et al. (2000). "In utero diethylstilbestrol (DES) exposure alters Hox gene expression in the developing mullerian system." FASEB J 14(9): 1101-1108.
    Bouskine, A., M. Nebout, et al. (2009). "Low doses of bisphenol A promote human seminoma cell proliferation by activating PKA and PKG via a membrane G-protein-coupled estrogen receptor." ENVIRON HEALTH PERSP 117(7): 1053-1058.
    Bullo, M., J. Salas-Salvado, et al. (2005). "Adiponectin expression and adipose tissue lipolytic activity in lean and obese women." OBES SURG 15(3): 382-386.
    Buteau-Lozano, H., G. Velasco, et al. (2008). "Xenoestrogens modulate vascular endothelial growth factor secretion in breast cancer cells through an estrogen receptor-dependent mechanism." J Endocrinol 196(2): 399-412.
    Buterin, T., C. Koch, et al. (2006). "Convergent transcriptional profiles induced by endogenous estrogen and distinct xenoestrogens in breast cancer cells." Carcinogenesis 27(8): 1567-1578.
    Carmeci, C., D. A. Thompson, et al. (1997). "Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer." Genomics 45(3): 607-617.
    Carmen, G. Y. and S. M. Victor (2006). "Signalling mechanisms regulating lipolysis." Cell Signal 18(4): 401-408.
    Castellano, L., G. Giamas, et al. (2009). "The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response." PNAS USA 106(37): 15732-15737.
    Cust, A. E., R. Kaaks, et al. (2007). "Plasma adiponectin levels and endometrial cancer risk in pre- and postmenopausal women." J Clin Endocrinol Metab 92(1): 255-263.
    Cymbaluk, A., A. Chudecka-Glaz, et al. (2008). "Leptin levels in serum depending on Body Mass Index in patients with endometrial hyperplasia and cancer." Eur J Obstet Gynecol Reprod Biol 136(1): 74-77.
    Diel, P., R. B. Geis, et al. (2004). "The differential ability of the phytoestrogen genistein and of estradiol to induce uterine weight and proliferation in the rat is associated with a substance specific modulation of uterine gene expression." Mol Cell Endocrinol 221(1-2): 21-32.
    Dominguez, M. A., M. A. Petre, et al. (2008). "Bisphenol A concentration-dependently increases human granulosa-lutein cell matrix metalloproteinase-9 (MMP-9) enzyme output." Reprod Toxicol 25(4): 420-425.
    Dolinoy, D. C., D. Huang, et al. (2007). "Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development." Proc Natl Acad Sci U S A 104(32): 13056-13061.
    Eudy, J. D., S. Yao, et al. (1998). "Isolation of a gene encoding a novel member of the nuclear receptor superfamily from the critical region of Usher syndrome type IIa at 1q41." Genomics 50(3): 382-384.
    Fang, H., W. Tong, et al. (2000). "Quantitative comparisons of in vitro assays for estrogenic activities." Environ Health Perspect 108(8): 723-729.
    Feinberg, A. P. (2000). "DNA methylation, genomic imprinting and cancer." Curr Top Microbiol Immunol 249: 87-99.
    Feng, S., S. J. Cokus, et al. (2010). "Conservation and divergence of methylation patterning in plants and animals." Proc Natl Acad Sci U S A 107(19): 8689-8694.
    Filardo, E. J., J. A. Quinn, et al. (2000). "Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF." Molecular Endocrinology 14(10): 1649-1660.
    Gao, J. G., J. Mazella, et al. (2002). "Hox proteins activate the IGFBP-1 promoter and suppress the function of hPR in human endometrial cells." DNA and Cell Biology 21(11): 819-825.
    Giguere, V. (2002). "To ERR in the estrogen pathway." Trends Endocrinol Metab 13(5): 220-225.
    Gould, J. C., L. S. Leonard, et al. (1998). "Bisphenol A interacts with the estrogen receptor alpha in a distinct manner from estradiol." Mol Cell Endocrinol 142(1-2): 203-214.
    Grandien, K., A. Berkenstam, et al. (1997). "The estrogen receptor gene: promoter organization and expression." Int J Biochem Cell Biol 29(12): 1343-1369.
    Hess, R. A. (2003). "Estrogen in the adult male reproductive tract: a review." Reprod Biol Endocrinol 1: 52.
    Hiroi, H., O. Tsutsumi, et al. (2004). "Differences in serum bisphenol a concentrations in premenopausal normal women and women with endometrial hyperplasia." Endocr J 51(6): 595-600.
    Ho, S. M., W. Y. Tang, et al. (2006). "Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4." Cancer Res 66(11): 5624-5632.
    Hong, H., L. Yang, et al. (1999). "Hormone-independent transcriptional activation and coactivator binding by novel orphan nuclear receptor ERR3." J Biol Chem 274(32): 22618-22626.
    Horard, B. and J. M. Vanacker (2003). "Estrogen receptor-related receptors: orphan receptors desperately seeking a ligand." J Mol Endocrinol 31(3): 349-357.
    Hugo, E. R., T. D. Brandebourg, et al. (2008). "Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes." Environ Health Perspect 116(12): 1642-1647.
    Huppunen, J. and P. Aarnisalo (2004). "Dimerization modulates the activity of the orphan nuclear receptor ERRgamma." Biochem Biophys Res Commun 314(4): 964-970.
    Inadera, H., T. Sekiya, et al. (2000). "Molecular analysis of the inhibition of monocyte chemoattractant protein-1 gene expression by estrogens and xenoestrogens in MCF-7 cells." Endocrinology 141(1): 50-59.
    Iorio, M. V., R. Visone, et al. (2007). "MicroRNA signatures in human ovarian cancer." Cancer Res 67(18): 8699-8707.
    Iso, T., T. Watanabe, et al. (2006). "DNA damage caused by bisphenol A and estradiol through estrogenic activity." Biol Pharm Bull 29(2): 206-210.
    Itoh, H., M. Iwasaki, et al. (2008). "A case-control study of the association between urinary cadmium concentration and endometriosis in infertile Japanese women." Sci Total Environ 402(2-3): 171-175.
    Joffe, M. (2003). "Infertility and environmental pollutants." Br Med Bull 68: 47-70.
    Jones, P. A. and D. Takai (2001). "The role of DNA methylation in mammalian epigenetics." Science 293(5532): 1068-1070.
    Kadowaki, T., T. Yamauchi, et al. (2007). "Adiponectin and adiponectin receptors in obesity-linked insulin resistance." Novartis Found Symp 286: 164-176; discussion 176-182, 200-163.
    Kass, S. U., D. Pruss, et al. (1997). "How does DNA methylation repress transcription?" Trends Genet 13(11): 444-449.
    Kim, J. J., H. S. Taylor, et al. (2007). "Altered expression of HOXA10 in endometriosis: potential role in decidualization." Mol Hum Reprod 13(5): 323-332.
    Kim, J. Y., E. H. Han, et al. (2010). "Bisphenol A-induced aromatase activation is mediated by cyclooxygenase-2 up-regulation in rat testicular Leydig cells." Toxicol Lett 193(2): 200-208.
    Kim, K., T. G. Son, et al. (2007). "Suppressive effects of bisphenol A on the proliferation of neural progenitor cells." J Toxicol Environ Health A 70(15-16): 1288-1295.
    Kim, K., T. G. Son, et al. (2009). "Potencies of bisphenol A on the neuronal differentiation and hippocampal neurogenesis." J Toxicol Environ Health A 72(21-22): 1343-1351.
    Klein, M. E., D. T. Lioy, et al. (2007). "Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA." Nat Neurosci 10(12): 1513-1514.
    Kuiper, G. G., J. G. Lemmen, et al. (1998). "Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta." Endocrinology 139(10): 4252-4263.
    Lang, L., GM. Zhang, et al. (2010). ”The combination of 17-estradiol and Bisphenol A weaken their respective action." ADV MATER RES 113-116:2220-2223.
    Laudanski, P., J. Szamatowicz, et al. (2005). "Matrix metalloproteinase-13 and membrane type-1 matrix metalloproteinase in peritoneal fluid of women with endometriosis." Gynecol Endocrinol 21(2): 106-110.
    Laurent, L., E. Wong, et al. (2010). "Dynamic changes in the human methylome during differentiation." Genome Res 20(3): 320-331.
    Lee, B., H. Du, et al. (2009). "Experimental murine endometriosis induces DNA methylation and altered gene expression in eutopic endometrium." Biol Reprod 80(1): 79-85.
    Lazar, M. A. (1993). "Thyroid hormone receptors: multiple forms, multiple possibilities." Endocr Rev 14(2): 184-193.
    Lu, T., Y. Achari, et al. (2006). "Estrogen receptor alpha regulates matrix metalloproteinase-13 promoter activity primarily through the AP-1 transcriptional regulatory site." Biochim Biophys Acta 1762(8): 719-731
    Lu, Y., J. B. Achari. (2007). "Estrogen receptor beta +/− ligands can modulate MMP-13 promoter activity by HIG-82 cells in vitro: evidence that ER-beta enhancement of activity can be modulated by estrogen and involves specific sites on the promoter.", Biochem. Cell. Biol 85: 326–336.
    Lui, W. O., N. Pourmand, et al. (2007). "Patterns of known and novel small RNAs in human cervical cancer." Cancer Res 67(13): 6031-6043.
    Maffini, M. V., B. S. Rubin, et al. (2006). "Endocrine disruptors and reproductive health: the case of bisphenol-A." Mol Cell Endocrinol 254-255: 179-186.
    Mahoney, M. M. and V. Padmanabhan (2010). "Developmental programming: impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus." Toxicol Appl Pharmacol 247(2): 98-104.
    Malumbres, M. and M. Barbacid (2005). "Mammalian cyclin-dependent kinases." Trends Biochem Sci 30(11): 630-641.
    Marsh, E. E., Z. Lin, et al. (2008). "Differential expression of microRNA species in human uterine leiomyoma versus normal myometrium." Fertil Steril 89(6): 1771-1776.
    Marsit, C. J., M. Avissar-Whiting, et al. (2010). "Bisphenol A exposure leads to specific microRNA alterations in placental cells." Reprod Toxicol 29(4): 401-406.
    Masuno, H., J. Iwanami, et al. (2005). "Bisphenol a accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway." Toxicol Sci 84(2): 319-327.
    Masuno, H., T. Kidani, et al. (2002). "Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes." J Lipid Res 43(5): 676-684.
    Moriyama, K., T. Tagami, et al. (2002). "Thyroid hormone action is disrupted by bisphenol A as an antagonist." J Clin Endocrinol Metab 87(11): 5185-5190.
    Muralidhar, B., L. D. Goldstein, et al. (2007). "Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels." J Pathol 212(4): 368-377.
    Murphy, L. C., B. Peng, et al. (2005). "Inducible upregulation of oestrogen receptor-beta1 affects oestrogen and tamoxifen responsiveness in MCF7 human breast cancer cells." J Mol Endocrinol 34(2): 553-566.
    Musri, M. M., R. Gomis, et al. (2007). "Chromatin and chromatin-modifying proteins in adipogenesis." Biochem Cell Biol 85(4): 397-410.
    Nakajima, G., K. Hayashi, et al. (2006). "Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are Associated with Chemoresponse to S-1 in Colon Cancer." Cancer Genomics Proteomics 3(5): 317-324.
    Nam, E. J., H. Yoon, et al. (2008). "MicroRNA expression profiles in serous ovarian carcinoma." Clin Cancer Res 14(9): 2690-2695.
    Ng, H. H., Y. Zhang, et al. (1999). "MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex." Nat Genet 23(1): 58-61.
    Okada, H., T. Tokunaga, et al. (2008). "Direct evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogen-related receptor-gamma." Environ Health Perspect 116(1): 32-38.
    Olsen, C. M., E. T. Meussen-Elholm, et al. (2003). "Effects of the environmental oestrogens bisphenol A, tetrachlorobisphenol A, tetrabromobisphenol A, 4-hydroxybiphenyl and 4,4'-dihydroxybiphenyl on oestrogen receptor binding, cell proliferation and regulation of oestrogen sensitive proteins in the human breast cancer cell line MCF-7." Pharmacol Toxicol 92(4): 180-188.
    O'Rourke, L., L. M. Gronning, et al. (2002). "Glucose-dependent regulation of cholesterol ester metabolism in macrophages by insulin and leptin." J Biol Chem 277(45): 42557-42562.
    Pan, Q., X. Luo, et al. (2007). "The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression." Mol Hum Reprod 13(11): 797-806.
    Pan, Q., X. Luo, et al. (2008). "Differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids." J Cell Mol Med 12(1): 227-240.
    Plass, C. and P. D. Soloway (2002). "DNA methylation, imprinting and cancer." Eur J Hum Genet 10(1): 6-16.
    Prins, G. S., L. Birch, et al. (2007). "Developmental estrogen exposures predispose to prostate carcinogenesis with aging." Reprod Toxicol 23(3): 374-382.
    Prins, G. S., W. Y. Tang, et al. (2008). "Perinatal exposure to oestradiol and bisphenol A alters the prostate epigenome and increases susceptibility to carcinogenesis." Basic Clin Pharmacol Toxicol 102(2): 134-138.
    Recchia, A. G., A. Vivacqua, et al. (2004). "Xenoestrogens and the induction of proliferative effects in breast cancer cells via direct activation of oestrogen receptor alpha." Food Addit Contam 21(2): 134-144.
    Resnick, K. E., H. Alder, et al. (2009). "The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform." Gynecol Oncol 112(1): 55-59.

    Routledge, E. J., R. White, et al. (2000). "Differential effects of xenoestrogens on coactivator recruitment by estrogen receptor (ER) alpha and ERbeta." J Biol Chem 275(46): 35986-35993.
    Rzepka-Gorska, I., R. Bedner, et al. (2008). "Serum adiponectin in relation to endometrial cancer and endometrial hyperplasia with atypia in obese women." Eur J Gynaecol Oncol 29(6): 594-597.
    Safe, S. H., L. Pallaroni, et al. (2002). "Problems for risk assessment of endocrine-active estrogenic compounds." Environ Health Perspect 110 Suppl 6: 925-929.
    Sakurai, K., M. Kawazuma, et al. (2004). "Bisphenol A affects glucose transport in mouse 3T3-F442A adipocytes." Br J Pharmacol 141(2): 209-214.
    Sakamoto, H., Y. Kogo, et al. (2008). "Sequential changes in genome-wide DNA methylation status during adipocyte differentiation." Biochem Biophys Res Com 366(2): 360-366.
    Samuelsen, M., C. Olsen, et al. (2001). "Estrogen-like properties of brominated analogs of bisphenol A in the MCF-7 human breast cancer cell line." Cell Biol Toxicol 17(3): 139-151.
    Sartippour, M. R., R. Pietras, et al. (2006). "The combination of green tea and tamoxifen is effective against breast cancer." Carcinogenesis 27(12): 2424-2433.
    Satoh, N., M. Naruse, et al. (2004). "Leptin-to-adiponectin ratio as a potential atherogenic index in obese type 2 diabetic patients." Diabetes Care 27(10): 2488-2490.
    Scott, J. D., E. J. Welch, et al. (2010). "Networking with AKAPs: Context-dependent Regulation of Anchored Enzymes." Mol Intervent 10(2): 86-97.
    Shang, Y. and M. Brown (2002). "Molecular determinants for the tissue specificity of SERMs." Science 295(5564): 2465-2468.
    Sharma, D., N. K. Saxena, et al. (2006). "Leptin promotes the proliferative response and invasiveness in human endometrial cancer cells by activating multiple signal-transduction pathways." Endocr-Relat Cancer 13(2): 629-640.
    Sheehan, D. M. (2000). "Activity of environmentally relevant low doses of endocrine disruptors and the bisphenol A controversy: initial results confirmed." Proc Soc Exp Biol Med 224(2): 57-60.
    Shih, M. C., K. T. Yeh, et al. (2006). "Promoter methylation in circadian genes of endometrial cancers detected by methylation-specific PCR." Mol Carcinogen 45(10): 732-740.
    Sieminska, L., C. Wojciechowska, et al. (2005). "Effect of postmenopause and hormone replacement therapy on serum adiponectin levels." Metabolism 54(12): 1610-1614.
    Signorile, P. G., E. P. Spugnini, et al. (2010). "Pre-natal exposure of mice to bisphenol A elicits an endometriosis-like phenotype in female offspring." Gen Comp Endocrinol 168(3): 318-325.
    Singleton, D. W., Y. Feng, et al. (2006). "Gene expression profiling reveals novel regulation by bisphenol-A in estrogen receptor-alpha-positive human cells." Environ Res 100(1): 86-92.
    Smith, C. C. and H. S. Taylor (2007). "Xenoestrogen exposure imprints expression of genes (Hoxa10) required for normal uterine development." FASEB J 21(1): 239-246.
    Soderberg, S., B. Ahren, et al. (2001). "Circulating IGF binding protein-1 is inversely associated with leptin in non-obese men and obese postmenopausal women." Eur J Endocrinol 144(3): 283-290.
    Szczepanska, M., P. Wirstlein, et al. (2010). "Reduced expression of HOXA10 in the midluteal endometrium from infertile women with minimal endometriosis." BIOMED PHARMACOTHER 64(10): 697-705.
    Takeshita, A., N. Koibuchi, et al. (2001). "Bisphenol-A, an environmental estrogen, activates the human orphan nuclear receptor, steroid and xenobiotic receptor-mediated transcription." Eur J Endocrinol 145(4): 513-517.
    Trujillo, M. E. and P. E. Scherer (2005). "Adiponectin--journey from an adipocyte secretory protein to biomarker of the metabolic syndrome." J Intern Med 257(2): 167-175.
    Vandenberg, L. N., R. Hauser, et al. (2007). "Human exposure to bisphenol A (BPA)." Reprod Toxicol 24(2): 139-177.
    Vivacqua, A., A. G. Recchia, et al. (2003). "The food contaminants bisphenol A and 4-nonylphenol act as agonists for estrogen receptor alpha in MCF7 breast cancer cells." Endocrine 22(3): 275-284.
    Walsh, D. E., P. Dockery, et al. (2005). "Estrogen receptor independent rapid non-genomic effects of environmental estrogens on [Ca2+]i in human breast cancer cells." Mol Cell Endocrinol 230(1-2): 23-30.
    Wang, T., X. Zhang, et al. (2007). "A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas." Genes Chromosomes Cancer 46(4): 336-347.
    Wang, X., S. Tang, et al. (2008). "Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth." PLoS One 3(7): e2557.
    Welshons, W. V., S. C. Nagel, et al. (2006). "Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure." Endocrinology 147(6 Suppl): S56-69.
    Welshons, W. V., K. A. Thayer, et al. (2003). "Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity." Environ Health Perspect 111(8): 994-1006.
    Whitehead, J. P., A. A. Richards, et al. (2006). "Adiponectin--a key adipokine in the metabolic syndrome." Diabetes Obes Metab 8(3): 264-280.
    Yaghmaie, F., O. Saeed, et al. (2005). "Caloric restriction reduces cell loss and maintains estrogen receptor-alpha immunoreactivity in the pre-optic hypothalamus of female B6D2F1 mice." Neuro Endocrinol Lett 26(3): 197-203.
    Yen, P. M. (2001). "Physiological and molecular basis of thyroid hormone action." Physiol Rev 81(3): 1097-1142.
    Yoshida, H. Y., R. Broaddus, et al. (2006). "Deregulation of the HOXA10 homeobox gene in endometrial carcinoma: Role in epithelial-mesenchymal transition." Cancer Res 66(2): 889-897.
    Zhang, A., Fu. Sun, et al. (2011). "Presentation and clinical significance of MMP13 in endometriosis of ovary." China J Mod Med 14: (in press)
    Zhao, A. Z., L. Cong, et al. (2007). "Regulation of adiponectin and leptin secretion and expression by insulin through a PI3K-PDE3B dependent mechanism in rail primary adipocytes." Biochem J 403: 519-525.
    Zemach, A., I. E. McDaniel, et al. (2010). "Genome-wide evolutionary analysis of eukaryotic DNA methylation." Science 328(5980): 916-919.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE