研究生: |
許晏彰 Yen-Chang Hsu |
---|---|
論文名稱: |
可萃取基因調控模組之多階式群聚法 A multi-step clustering for extracting transcriptional modules |
指導教授: |
唐傳義
Chuan-Yi Tang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 25 |
中文關鍵詞: | 群聚法 、共同表現之網絡 、密集子圖 、基因轉譯模組 、酵母菌 |
外文關鍵詞: | clustering, co-expression networks, dense sub-graph, transcriptional module, yeast |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
闡明基因調控網絡的模組化,是了解複雜生物系統的主要方式。本研究提出一個新的多階式群聚法架構,可以萃取出由同一群調控子所調控的基因,此群基因稱為基因調控模組。本研究所使用的方法,首先從多個帶有時序資訊的基因微陣列資料中取得顯著的共表現證據,接著利用新提出的密集子圖尋找演算法在此共表現網絡上找出密集子圖,同一子圖內的成員即構成一個模組。我們將此方法應用到模擬的資料與真實的酵母菌基因微陣列資料,結果顯示以此方法所得到的模組,可以有效的還原調控網絡的拓樸結構,並且擁有高度一致性的基因功能註解;此外,在同一模組中,藉由基因的啟動序列分析,我們也可以發現顯著的結合樣式,這些結合樣式在文獻中所報導的主要功能,也與模組的主要基因註解一致,證明了本方法所得到的模組,是具有顯著生物意義的。
Deciphering the modularity of transcriptional networks is a principle approach to understand this complex biological system. We purpose a multi-step clustering scheme to extract sets of genes regulated by the same set of transcription factors. These sets of genes are defined as transcriptional modules. In our approach, we first obtain significant evidences of co-expression from multiple microarray time profiles, and then extract sets of genes which forms dense sub-graph on the co-expression networks by a novel method called Clique-based Dense Sub-graph Finding Algorithm. We apply this scheme to artificial data and real microarray datasets of Saccharomyces cerevisiae. The resulted modules can potently imply the topological structure of transcriptional networks, and also have significant annotated function, component, or process. In the promoter sequence analysis, we can also find significant binding motifs, and have agreement on function between resulted modules and known motifs.
1. Segal, E., et al., Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet, 2003. 34(2): p. 166-76.
2. Wang, W., et al., A systematic approach to reconstructing transcription networks in Saccharomycescerevisiae. Proc Natl Acad Sci U S A, 2002. 99(26): p. 16893-8.
3. Segal, E., R. Yelensky, and D. Koller, Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics, 2003. 19 Suppl 1: p. i273-82.
4. Gasch, A.P., et al., Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell, 2000. 11(12): p. 4241-57.
5. Causton, H.C., et al., Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell, 2001. 12(2): p. 323-37.
6. Chua, G., et al., Transcriptional networks: reverse-engineering gene regulation on a global scale. Curr Opin Microbiol, 2004. 7(6): p. 638-46.
7. Reiss, D.J., N.S. Baliga, and R. Bonneau, Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. BMC Bioinformatics, 2006. 7: p. 280.
8. Yeung, K.Y., M. Medvedovic, and R.E. Bumgarner, From co-expression to co-regulation: how many microarray experiments do we need? Genome Biol, 2004. 5(7): p. R48.
9. Cheng, Y. and G.M. Church, Biclustering of expression data. Proc Int Conf Intell Syst Mol Biol, 2000. 8: p. 93-103.
10. Getz, G., E. Levine, and E. Domany, Coupled two-way clustering analysis of gene microarray data. Proc Natl Acad Sci U S A, 2000. 97(22): p. 12079-84.
11. Supper, J., et al., EDISA: extracting biclusters from multiple time-series of gene expression profiles. BMC Bioinformatics, 2007. 8: p. 334.
12. Kluger, Y., et al., Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res, 2003. 13(4): p. 703-16.
13. Prelic, A., et al., A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics, 2006. 22(9): p. 1122-9.
14. Lizhuang, Z. and J.Z. Mohammed, TRICLUSTER: an effective algorithm for mining coherent clusters in 3D microarray data, in Proceedings of the 2005 ACM SIGMOD international conference on Management of data. 2005, ACM: Baltimore, Maryland.
15. Etsuji, T., T. Akira, and T. Haruhisa, The worst-case time complexity for generating all maximal cliques and computational experiments. Theor. Comput. Sci., 2006. 363(1): p. 28-42.
16. Garten, Y., S. Kaplan, and Y. Pilpel, Extraction of transcription regulatory signals from genome-wide DNA-protein interaction data. Nucleic Acids Res, 2005. 33(2): p. 605-15.
17. Kafri, R., A. Bar-Even, and Y. Pilpel, Transcription control reprogramming in genetic backup circuits. Nat Genet, 2005. 37(3): p. 295-9.
18. Boyle, E.I., et al., GO::TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics, 2004. 20(18): p. 3710-5.
19. Romer, K.A., G.R. Kayombya, and E. Fraenkel, WebMOTIFS: automated discovery, filtering and scoring of DNA sequence motifs using multiple programs and Bayesian approaches. Nucleic Acids Res, 2007. 35(Web Server issue): p. W217-20.
20. Tavazoie, S., et al., Systematic determination of genetic network architecture. Nat Genet, 1999. 22(3): p. 281-5.
21. Kurdistani, S.K., et al., Genome-wide binding map of the histone deacetylase Rpd3 in yeast. Nat Genet, 2002. 31(3): p. 248-54.
22. Conlon, E.M., et al., Integrating regulatory motif discovery and genome-wide expression analysis. Proc Natl Acad Sci U S A, 2003. 100(6): p. 3339-44.
23. Pritsker, M., et al., Whole-genome discovery of transcription factor binding sites by network-level conservation. Genome Res, 2004. 14(1): p. 99-108.
24. MacIsaac, K.D., et al., An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics, 2006. 7: p. 113.