簡易檢索 / 詳目顯示

研究生: 謝睿倢
Hsieh, Ruei-Jie
論文名稱: 利用LSTM自動編碼器設計多變量感測時間序列資料的非監督學習及時偵錯方法
Unsupervised real-time anomaly detection On Multivariate Sensing Time Series Data using LSTM-Based Autoencoder
指導教授: 周志遠
Chou, Jerry
口試委員: 李哲榮
Lee, Che-Rung
李端興
Lee, Duan-Shin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 26
中文關鍵詞: 深度學習機器學習異常偵測多變量時序資料長短期記憶網路自動編碼器
外文關鍵詞: Deep Learning, Machine Learning, Anomaly Detection, Multivariate Time-Series Data, Long Short-Term Memory, Autoencoder
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 物聯網和人工智慧的快速發展為各個領域帶來卓越的改變。這些科技的發展促使了工業4.0的推進,工業4.0又稱為智慧製造,主要的目標是希望可以達成彈性化的自動生產程序。
    在這篇論文中,我們利用真實產線的感測器數據來研究異常偵測分析,期望在產線的前期階段提早偵測到潛在的異常情形並提升準確率,以降低生產成本及減少生產時間。因為異常偵測的資料特性,異常的數據量相對於整體數據而言是非常有限的,除此之外,異常的表現情形往往並非一致,我們對此真實多變量感測時間序列資料提出了一個基於長短期記憶網路(LSTM)自動編碼器的非監督式的及時異常偵錯方法。在實驗中,其他作法僅能有約70%~85%的精確率和召回率,而我們所提出的方法則可以達到將近90%的準確度。


    The emergence of IoT and AI has brought revolutionary change in various application domains. One of them is Industry 4.0, also called Smart Manufacturing, which aims to achieve highly flexible and automated production processes.
    In this thesis, we study a use case of anomaly detection in smart manufacturing using the real data collected from the sensing devices of a factory production line. Our goal is to improve the anomaly detection accuracy at an earlier stage of production line, so that cost and time wasted by possible production failures can be reduced. To overcome the limited and irregular anomaly patterns found from our multivariate sensor dataset, we proposed an unsupervised real-time anomaly detection algorithm based on LSTM-based Auto-Encoder. Our evaluations show that our approach achieved almost 90\% accuracy for both precision and recall while other classification or regression based methods only reached 70%~85%.

    1 Introduction ----------------------1 2 Background ------------------------4 2.0.1 Long Short-Term Memory(LSTM)--4 2.0.2 Autoencoder ------------------5 3 Related work ----------------------7 4 Problem Description ---------------9 4.0.1 Objective and Challenges -----9 4.0.2 Use case scenario------------10 5 Methodology ----------------------12 5.0.1 Model Selection -------------12 5.0.2 Data Preprocessing ----------12 5.0.3 Model Training & Evaluation -14 5.0.4 Transfer Learning -----------16 6 Experiment -----------------------17 6.0.1 Experiment Setup ------------17 6.0.2 Experiment Results ----------18 7 Conclusion -----------------------24 Reference --------------------------25

    [1] Bengio, Y., Simard, P., and Frasconi, P. Learning long-term dependencies
    with gradient descent is difficult. IEEE Transactions on Neural Networks 5, 2
    (March 1994), 157–166.
    [2] Hochreiter, S. The vanishing gradient problem during learning recurrent neural
    nets and problem solutions. International Journal of Uncertainty, Fuzziness
    and Knowledge-Based Systems 6 (04 1998), 107–116.
    [3] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural computation 9 (12 1997), 1735–80.
    [4] Kagermann, H., Lukas, W., and Wahlster, W. Industrie 4.0 - mit dem internet
    der dinge auf dem weg zur 4. industriellen revolution. VDI Nachrichten (2011).
    [5] Li, S., Xie, Y., Farajtabar, M., and Song, L. Detecting weak changes in dynamic events over networks. IEEE Transactions on Signal and Information
    Processing over Networks PP (03 2016).
    [6] Liu, H., Gegov, A., and Cocea, M. Rule-based systems: a granular computing
    perspective. Granular Computing 1, 4 (Dec 2016), 259–274.
    [7] Liu, J., Guo, J., Orlik, P., Shibata, M., Nakahara, D., Mii, S., and Takáč,
    M. Anomaly detection in manufacturing systems using structured neural networks. In 2018 13th World Congress on Intelligent Control and Automation
    (WCICA) (July 2018), pp. 175–180.
    [8] Loganathan, G., Samarabandu, J., and Wang, X. Sequence to sequence pattern
    learning algorithm for real-time anomaly detection in network traffic. In 2018
    IEEE Canadian Conference on Electrical Computer Engineering (CCECE)
    (May 2018), pp. 1–4.
    [9] Lopez, F., Saez, M., Shao, Y., Balta, E. C., Moyne, J., Mao, Z. M., Barton, K.,
    and Tilbury, D. Categorization of anomalies in smart manufacturing systems to
    support the selection of detection mechanisms. IEEE Robotics and Automation
    Letters 2, 4 (Oct 2017), 1885–1892.
    [10] Lu, Y., Morris, K., and Frechette, S. Current standards landscape for smart
    manufacturing systems. NIST: Gaitehrsburg 8107 (2016).
    [11] Malhotra, P., Vig, L., Shroff, G., and Agarwal, P. Long short term memory
    networks for anomaly detection in time series. In ESANN (2015).
    25
    [12] Orsenigo, C., and Vercellis, C. Combining discrete svm and fixed cardinality
    warping distances for multivariate time series classification. Pattern Recogn.
    43, 11 (Nov. 2010), 3787–3794.
    [13] Pan, S. J., and Yang, Q. A survey on transfer learning. IEEE Transactions on
    Knowledge and Data Engineering 22, 10 (Oct 2010), 1345–1359.
    [14] Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu,
    Q., Zakaria, J., and Keogh, E. Searching and mining trillions of time series
    subsequences under dynamic time warping. In Proceedings of the 18th ACM
    SIGKDD International Conference on Knowledge Discovery and Data Mining
    (New York, NY, USA, 2012), KDD ’12, ACM, pp. 262–270.
    [15] Roy, J. Rule-based expert system for maritime anomaly detection, 2010.
    [16] Seto, S., Zhang, W., and Zhou, Y. Multivariate time series classification using dynamic time warping template selection for human activity recognition.
    In 2015 IEEE Symposium Series on Computational Intelligence (Dec 2015),
    pp. 1399–1406.
    [17] Shahid, N., Naqvi, I. H., and Qaisar, S. B. One-class support vector machines:
    analysis of outlier detection for wireless sensor networks in harsh environments. Artificial Intelligence Review 43, 4 (Apr 2015), 515–563.
    [18] Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to sequence learning with
    neural networks. CoRR abs/1409.3215 (2014).
    [19] Tai, K. S., Socher, R., and Manning, C. D. Improved semantic representations
    from tree-structured long short-term memory networks. In Proceedings of the
    53rd Annual Meeting of the Association for Computational Linguistics and the
    7th International Joint Conference on Natural Language Processing (Volume
    1: Long Papers) (Beijing, China, July 2015), Association for Computational
    Linguistics, pp. 1556–1566.
    [20] Wang, K.-S., Li, Z., Braaten, J., and Yu, Q. Interpretation and compensation of
    backlash error data in machine centers for intelligent predictive maintenance
    using anns. Advances in Manufacturing 3, 2 (Jun 2015), 97–104.
    [21] Wong, W.-K., Moore, A., Cooper, G., and Wagner, M. Rule-based anomaly
    pattern detection for detecting disease outbreaks. In Eighteenth National Conference on Artificial Intelligence (Menlo Park, CA, USA, 2002), American
    Association for Artificial Intelligence, pp. 217–223.
    [22] Zheng, Y., Liu, Q., Chen, E., Ge, Y., and Zhao, J. L. Time series classification
    using multi-channels deep convolutional neural networks. In Web-Age Information Management (Cham, 2014), F. Li, G. Li, S.-w. Hwang, B. Yao, and
    Z. Zhang, Eds., Springer International Publishing, pp. 298–310.

    QR CODE