研究生: |
羅佩凌 Luo, Pei-Ling |
---|---|
論文名稱: |
二氧化碳分子4.3 μm熱頻帶躍遷精密光譜 Precision Spectroscopy of 12C16O2 Hot Band 0111←0110 Transitions Near 4.3 μm |
指導教授: |
施宙聰
Shy, Jow-Tsong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 精密光譜 |
外文關鍵詞: | Precision Spectroscopy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗主要是測量12C16O2在4.3 μm附近0111←0110熱頻帶(hot band)躍遷譜線的絕對頻率,目的是為了提供最準確的譜線躍遷頻率作為理論計算與模擬的基礎。我們將實驗數據結合分子常數擬合公式,可以得到新的分子常數預測二氧化碳頻率的參考。
實驗系統光源為窄線寬且波長可調之中紅外差頻雷射光,此差頻光源是利用鈦藍寶石雷射(Ti:Sapphire laser)與釹釔鋁石榴雷射(Nd:YAG laser)通過週期性反轉非線性晶體,產生波長2.6~4.7 μm的中紅外光源。利用此中紅外光源從事飽和吸收光譜的研究,並測量躍遷譜線的絕對頻率,頻率測量的方法是將Nd:YAG 雷射鎖在127 I2 R(56)32-0, a10標準譜線上作雷射穩頻,並將Ti:Sapphire雷射鎖在譜線三階微分訊號的中心,最後用光頻梳系統(OFC)來測得此時Ti:Sapphire雷射精確頻率,並計算得到飽和吸收線的絕對頻率。
首先,我們利用測量標準譜線CH4 F2(2) P(7)的絕對頻率來測試及分析我們的實驗系統。在良好的光模態與準相位匹配下,可以產生光功率約5 mW以上波長3.39 μm的中紅外差頻光,其光產生效率約為理論計算值的43 %。飽和譜線訊噪比約為200且鎖頻後的標準差為5 kHz,測量到的躍遷譜線中心頻率不準度為15 kHz,與標準譜線數據之中心頻率相差30 kHz。
12C16O2 0111←0110躍遷譜線頻率測量實驗中,我們利用加熱二氧化碳氣體,增加在0110振動能階的12C16O2數量,可以得到較強的0111←0110躍遷譜線吸收訊號。利用上述的高解析度的中紅外差頻光源與高精密的光頻梳系統,測量0111←0110 P(30)躍遷譜線的線寬與絕對頻率,其中心頻率為69,267,228.761(15) MHz,每次測得的標準差約為24 kHz。此外,測量在12C16O2 0111←0110 P(30)躍遷譜線頻率± 0.5 GHz內其他二氧化碳之躍遷譜線,當12C16O2 0111←0110 P(30)訊噪比 > 30 dB時,旁邊強度較弱的線的訊噪比可以達到 ~ 10 dB,藉由此次測量,可以瞭解飽和吸收光譜系統的靈敏度與準確度,可以作為未來的實驗方向的參考。
[1] The HITRAN database is available at http://cfa-www.harvard.edu/HITRAN
[2] D. Bailly, R. Farrenq, and C. Rossetti, “Vibrational luminescence of CO2 excited by dc discharge: Rotational and vibrational molecular constants,” J. Mol. Spectrosc. 70, 124-133 (1978)
[3] G. Guelachvili, “High-resolution fourier spectra of carbo dioxide and three of its isotopic species near 4.3 μm,” J. Mol. Spectrosc. 79, 72–83 (1980)
[4] D. Bailly, R. Farrenq, G. Guelachvili, and C. Rossetti, “12C16O2 analysis of emission fourier spectra in the 4.5-μm region: Rovibrational transitions 0ν2lν3- 0ν2l(ν3-1), ν2 = l,” J. Mol. Spectrosc. 90, 74-105 (1981)
[5] D. Bailly, “12C16O2: A set of spectroscopic constants from a simultaneous treatment of rovibrational bands at 4.5and 15 μm,” J. Mol. Spectrosc. 166, 383-394 (1994)
[6] Charles E. Miller, and Linda R. Brown, “Near infrared spectroscopy of carbon dioxide Ι. 16O12C16O line positions,” J. Mol. Spectrosc. 228, 329-354 (2004)
[7] 鄭王曜, 施宙聰, “2005 年諾貝爾物理獎得主---漢希(T.W. H□nsch)與霍爾(J.L. Hall),” 物理雙月刊(二十八卷一期), 15-21 (2006)
[8] S. Borri, S. Bartalini, I. Galli, P. Cancio, G. Giusfredi, D. Mazzotti, A. Castrillo, L. Gianfrani and P. De Natale, “Lamb-dip locked quantum cascade laser for comb-referenced IR absolute frequency measurements,” Opt. Express 16, 11637-11646 (2008)
[9] A. Castrillo, E. De Tommasi, L. Gianfrani, L. Sirigu and J. Faist, “Doppler-free saturated-absorption spectroscopy of CO2 at 4.3 μm by means of a distributed feedback quantum cascade laser,” Opt. Lett. 31, 3040–3042 (2006)
[10] Peter F. Bernath, “Spectra of atoms and molecules, 2nd ed,” Oxford University Press (2005)
[11] W. J. Witteman, “The CO2 laser,” Springer Series in Optical Sciences Vol. 53, Springer-Verlag Press (1987)
[12] J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Ledebvre-Brion, A. J. Merer, D. A. Ramsay, J. Rostas, and R. N. Zare, “The labeling of parity doublet levels in linear molecules” J. Mol. Spectrosc. 55, 500-503 (1975)
[13] J. Michael Hollas, “High Resolution Spectroscopy, 2nd ed” J. Wiley (1998)
[14] Gerhard Herzberg, “Molecular spectra and molecular structure: Spectra of diatomic molecules, 2nd ed,” Krieger Publishing Co (1989)
[15] F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Top. Appl. Phys. 89, 445–516 (2003)
[16] Robert W. Boyd, “Nonlinear Optics, 2nd ed,” Academic Press Limited (2003)
[17] S. Borri, P. Cancio, P. De Natale, G. Giusfredi, D. Mazzotti, and F. Tamassia, “Power-boosted difference-frequency source for high-resolution infrared spectroscopy,” Appl. Phys. B 76, 473-477 (2003)
[18] http://it.iucr.org/Da/ch1o7v0001/sec1o7o3/
[19] O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343-348 (2008)
[20] 廖俊杰, “二氧化碳分子在4.3 μm及2.7 μm之高精密光譜研究,” 國立清華大學物理學系博士論文 (2008)
[21] 鍾杰興, “二氧化碳在4.3 μm基頻帶高旋轉量子數躍遷之絕對頻率測量,” 國立清華大學物理學系碩士論文 (2008)
[22] K. Shimoda, “High-resolution laser spectroscopy,” Vol. 13 of Topics in Applied Physics, Springer-Verlag Press (1976)
[23] Marier Simeckova, David Jacquemart, Laurence S, Rothman, Robert R. Gamache, and Aaron Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. & Radiat. Transfer 98, 130-155 (2003)
[24] W. Demtroder, “Laser spectroscopy, Vol. 2: Experimental techniques, 4th ed,” Springer-Verlag Press (2008)
[25] Masataka Nakazawa, “Phase-sensitive detection on Lorentzian line shape and its application to frequency stabilization of lasers,” J. Appl. Phys. 59, 2297–2305 (1986)
[26] 方惠梅, “碘分子穩頻雷射之研究,” 國立交通大學光電工程系所博士論文 (2005)
[27] Coherent Inc., http://www.coherent.com/index.cfm
[28] O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86, 111–115 (2007)
[29] T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103-133 (2003)
[30] 李明翰, “飛秒光頻梳的改進,” 國立清華大學光電所碩士論文 (2008)
[31] I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997)
[32] L. Goldberg, W. K. Burns, and R. W. McElhanon, “Difference-frequency generation of tunable mid-infrared radiation in bulk periodically poled LiNbO3,” Opt. Lett. 20, 1280–1282 (1995)