簡易檢索 / 詳目顯示

研究生: 馮俊傑
Feng, Jin-Jye (Chun-Chieh Feng)
論文名稱: Studies of the involvement of GPCR system in cancer diseases: Discovery and characterization of 5-HT receptors and transporters in HeLaS3 cells by [3H]8-OH-DPAT and other serotonergic ligands
研究G蛋白偶合受體系統與癌症的關聯用[3H]8-OH-DPAT 放射性標記配位體與其他血清素神經元配位體探討血清素受體和轉運蛋白於HeLaS3癌細胞的特性
指導教授: 楊孝德
Yang, Shiaw-Der
口試委員: 林志侯
楊孝德
呂鋒洲
魏健吾
顧記華
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 163
中文關鍵詞: [3H]8-OH-DPAT5-HT1A受體5-HT生物胺運送體G蛋白偶合受體HeLaS3腫瘤細胞放射性標記配位體結合受體實驗
外文關鍵詞: [3H]8-OH-DPAT, 5-HT1A receptor, 5-HT transporter, GPCRs, HeLaS3 cells, Radioligand binding assay
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有一些G蛋白偶合受體的功能,在癌症生物學是有相關聯的; 然而對於G蛋白偶合受體,在腫瘤上的表現,到目前還少有被探討。利用一系列的放射性標記配位體結合受體實驗方法,剖析了G蛋白偶合受體在腫瘤上的表達,而發現在HeLaS3腫瘤細胞上,有一種5-HT1A受體(5-羥色胺受體1A或血清張力素受體1A)辨識結合位置可被其作用劑的放射性標記配位體 [3H]8-OH-DPAT以高量、專一性、呈飽和態的結合。
    在後續的競爭結合研究實驗中,多種血清張力素受體的作用藥物及運送體抑制劑都能呈現濃度-依賴關係,有效地拮抗[3H]8-OH-DPAT的結合,而8-OH-DPAT亦能拮抗放射性標記的生物胺運送體結合位。顯示5-HT1A受體的作用劑[3H]8-OH-DPAT不但可以以非常高專一性的結合到HeLaS3腫瘤活細胞上,而且具有多樣式的結合位置,其中有部分是與再吸收的運送體有關。
    [125I]RTI-55和 [3H]paroxetine都能以飽和方式,結合到HeLaS3腫瘤細胞上; 一種或多種與5-HT受體相關的亞型受體被顯現出來。因此,表示HeLaS3腫瘤細胞內具有不同型式的5-HT受體系統的相關結合位置。

    這些實驗觀察的結果,將可能有助於說明5-HT運送體與受體系統在腫瘤細胞的關聯性及其可能的致癌機轉及所牽涉的藥理作用。


    Some G protein-coupled receptors (GPCRs) have functional links to cancer biology, yet the manifestation of GPCRs in tumor types is little studied to date. Using a battery of radioligand binding assays for profiling GPCR targets on HeLaS3 cells; high level of specific binding of a 5-HT1A receptor recognition binding agonist [3H]8-OH-DPAT was observed in these cells and characterized.
    Follow-up studies in competition experiments, several serotonergic compounds and biogenic amine transporter inhibitors competed effectively against [3H]8-OH-DPAT binding with concentration–dependent relationship; 8-OH-DPAT displayed affinity for the labeled amine transporter sites, demonstrated that 5-HT1A receptor agonist [3H]8-OH-DPAT not only binds to intact HeLaS3 cells with high specific binding, but also has multiple binding sites, some of which relate to uptake.
    [125I]RTI-55 and [3H]paroxetine bound in a saturable fashion to HeLaS3 cells. One or more of the related to 5-HT receptor subtypes was manifested in HeLaS3 cells. It is suggested that HeLaS3 cells contain distinct types of the related to 5-HT receptor system binding sites.
    These observations could help elucidate the relevance of the 5-HT transporter and receptor systems as well as the possible tumorigenic mechanisms with attendant pharmacological implications in tumor cells.

    Contents Abbreviations V 1. Introduction 1 1.1 The GPCR superfamily 1 1.2 Purpose of this thesis 17 2. Materials and Methods 31 2.1 Materials 31 2.2 Methods 32 2.2.1 Cell culture 32 2.2.2 Profiling GPCR targets in HeLaS3 cells by radioligand binding assays 33 2.2.3 [3H]8-OH-DPAT binding to HeLaS3 cells 33 2.2.4 Linearity experiments 34 2.2.5 Time course experiments 34 2.2.6 Saturation binding studies of [3H]8-OH-DPAT 35 2.2.7 Competitive binding studies 35 2.2.7.1 Competitive binding studies of [3H]8-OH-DPAT by serotonergic reference compounds 35 2.2.7.2 Homologous competition experiments of [3H]8-OH-DPAT 36 2.2.7.3 Displacement of specific binding of [3H]8-OH-DPAT by biogenic amine transporters 36 2.2.8 [125I]RTI-55 binding assay 37 2.2.9 [3H]paroxetine binding assay 38 2.2.10 Serotonin receptor radioligands binding profiles 38 2.2.11 Radioligand binding to membrane preparations 39 2.2.12 DMSO tolerance studies 40 2.2.13 Equipment 40 2.2.14 Calculations and data analysis 40 3 Results 42 3.1 Discovery and characterization of [3H]8-OH-DPAT binding to HeLaS3 Cells 42 3.1.1 Profiling GPCR targets in HeLaS3 cells 42 3.1.2 Linearity of radioligand binding with increasing concentrations of cells 42 3.1.3 Time course 43 3.1.4 Saturation binding experiments analysis of [3H]8-OH-DPAT agonist 43 3.1.5 Competition binding experiments 45 3.2 Characterization of 5-HT transporter and receptor system in HeLaS3 cells by [3H]8-OH-DPAT and other serotonergic ligands 46 3.2.1 Displacement of the specific binding of [3H]8-OH-DPAT by biogenic amine transporter inhibitors in HeLaS3 cells 46 3.2.2 [125I]RTI-55 binding to transporters in HeLaS3 cells 48 3.2.3 [3H]paroxetine binding to transporters in HeLaS3 cells 49 3.2.4 Serotonin receptor radioligand binding profile in HeLaS3 cells 49 3.2.5 Radioligand binding to membrane preparations 50 3.2.6 DMSO tolerance studies 51 4 Discussion 52 4.1 Discovery and characterization of [3H]8-OH-DPAT binding to HeLaS3 Cells 52 4.2 Characterization of 5-HT transporter and receptor system in HeLaS3 cells by [3H]8-OH-DPAT and other serotonergic ligands 59 4.3 Binding characteristics of serotonergic ligands clue up drug design in tumor 66 4.4 Endogenous serotonin ligand could have different modes of interactions in tumor cells 70 4.5 Action mechanisms of serotonin in intact cell 76 4.6 Serotonin system and cancer 81 4.7 Future direction of research 85 5 Conclusions 89 References 92 Figures 121 Tables 148 Postscript 163 Abbreviations [125I]RTI-55: [125I]3-beta-(4-iodophenyl)tropane-2-beta-carboxylic acid methyl ester [3H]8-OH-DPAT: [3H]8-OH-2-(di-n-propylamino) 1,2,3,4-tetrahydronaphthalene [3H]GR-113808: [3H]-[1-(2-methanesulfonamidoethyl)piperidin-4-yl]methyl-1-methylindole-3-carboxylate [3H]GR-65630: [3H]-3-(5-methyl-1H-imidazol-4-yl)-1-(1-methyl-1H-indol-3-yl)-1- propanone [3H]LSD: [3H]lysergic acid diethylamide 5-HT1A: 5-hydroxytryptamine1A (serotonin; 5-HT1A) AC/GC: adenylyl or guanylyl cyclases (AC or GC) ADTRS: agonist-directed trafficking of receptor stimulus AKT (Akt): a serine/threonine protein kinase, isolated from the Ak strain of mouse, "t" stands for 'transforming' AP1: activator protein 1 AP2: adaptor protein 2, which aid clathrin mediated endocytosis ASK1: apoptosis signal-regulating kinase 1( a MKKKs) ATF1: activating transcription factor 1 AV: atrioventricular BIMP1: Bcl10-Interacting MAGUK Protein-1 BL: Burkitt lymphoma BtK: Brutons tyrosine kinase Calm (CaM): calmodulin Caln (CaCN): calcinurin cAMP: cyclic AMP or 3'-5'-cyclic adenosine monophosphate Cdc 42: cell division cycle 42 cGMP: cyclic guanosine monophosphate CHF: congestive heart failure CHO: Chinese hamster ovary cells CNS: central nervous system CRE: cAMP response element CREB: cAMP responsive element binding protein Crk: chicken tumour virus no. 10 [CT10] regulator of kinase CYP2D6: cytochrome P-450 2D6 DG: diacylglycerol DMSO: dimethyl sulfoxide DNA: deoxyribonucleic acid EDGs: endothelial differentiation genes EDTA: ethylenediaminetetraacetic acid EGFR: epidermal growth factor receptor Egr-1: early growth response protein 1 ELK1: Ets LiKe gene1 EPAC: exchange protein directly activated by cAMP ERK1/2: extracellular signal-regulated kinase 1/2 FAK: focal adhesion kinase FBS: fetal bovine serum FOXO3: forkhead box O3 G proteins: guanine nucleotide-binding proteins GAP: GTPase activating protein GEF: guanine nucleotide exchange factors GIRK: G-ptotein-coupled inwardly rectifying potassium GPCRs: G protein-coupled receptors Grb: growth factor receptor-bound protein, an SH3-SH2-SH3 adapter protein GRK: G protein-coupled receptor kinases GTPases: a large family of hydrolase enzymes that can bind and hydrolyze GTP HeLa cell: Henrietta Lack’s cell HEPES: 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid HIF-1α: hypoxia-inducible factor-1α HPA: hypothalamic-pituitary-adrenal HPV: human papilloma virus HTN: hypertension HUVEC: human umbilical vein endothelial cells IBS: irritable bowel syndrome IC50: 50% inhibitory concentration IKK: IκB kinase IP3: inositol (1,4,5)-triphosphate, inositol trisphosphate 3 IκBs: inhibitor of κB JNK: Jun N-terminal kinase Kd: equilibrium dissociation constant LARG: leukemia-associated RhoGEF(Rho-specific guanine nucleotide exchange factors) LPA: lysophospholipid acid MAPK: mitogenic activated protein kinases modules MEK: a MAPK, MAPK kinase, MKKs (MEK1/2), MAPKK, MAP2K mRNA: messenger RNA mTOR: mammalian of the target of rapamycin NECA: 5’-N-Ethylcarboxamidoadenosine NFAT: nuclear factor of activated T-cells NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells nH: Hill coefficient NOS: nitric oxide synthase NRTK: non-receptor tyrosine kinases NSB: non-specific binding OCD: obsessive-compulsive disorder p115RhoGEF: a GTPase activating protein for Gα12 and Gα13 p70RSK: p70 ribosomal S6 kinase p90RSK: p90 ribosomal S6 kinase PA: phosphatidic acid PAK: P21-activated kinase (a MKKKs) PAR-1: protease-activated receptors PBS: phosphate buffer saline PCR: polymerase chain reaction PDE: phosphodiesterase PDK1: phosphoinositide-dependent protein kinase 1 PDZ: post synaptic density protein (PSD95), Drosophila disc large tumor suppressor (DlgA), and zonula occludens-1 protein (zo-1) PDZ-RhoGEF: PDZ domain-containing Rho guanine nucleotide exchange factor PEI: polyethyleneimine PGE2: prostaglandin E2 PI3Ks: phosphinositide 3-kinases PIP2: phosphatidylinositol bisphosphate PKA: protein serine/threonine kinase A PKB: protein kinase B PKC: protein kinase C PKD: protein kinase D PLA2: phospholipase A2 PLC: phospholipase C PLC-β: phospholipase C-β PLD: phospholipase D PYK2 (Pyk2): proline-rich tyrosine kinase-2 RAMP: receptor activity-modifying proteins Ras: RAt Sarcoma, the proto-oncogenic protein (G-protein) RGS: regulator of G-protein signaling Rho-GEF: guanine-nucleotide exchange factors for Rho protein RTK: receptor tyrosine kinases S.E.M.: standard error of the mean SERT: serotonin transporter Shc: Src homology 2 domain containing; SH2-containing protein SIDS: sudden infant syndrome Sos: Son of Sevenless, a guanine nucleotide exchange factors Src: 'Rous sarcoma oncogene', a protein kinase, tyrosine (non-receptor) SRF: serum response factor SSRIs: serotonin-selective reuptake inhibitors STAT3: signal transducers and activators of transcription factors 3 TG: transglutaminase TORC1: mammalian of the target of rapamycin complex 1 TPH (Tph): tryptophan hydroxylase TRH: thyrotropin-releasing hormone Tris-HCl: tris(hydroxymethyl)aminomethane hydrochloride TSH: thyrotropin stimulating hormone VIP: vasoactive intestinal peptide VMAT2: vesicle monoamine transporter 2 WHO: world health organization

    References

    Abramovitz, M., Adam, M., Boie, Y., Carriere, M-C., Denis, D., Godbout, C., Lamontagne, S., Rochette, C., Sawyer, N., Tremblay, N.M., Belley, M., Gallant, M., Dufresne, C., Gareau, Y., Ruel, R., Juteau , H., Labelle, M., Ouimet, N. and Metters, K.M. (2000). The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs. Biochim. Biophys. Acta. 1483, 285-293.

    Abu-Helo, A. and Simonin, F. (2010). Identification and biological significance of G protein-coupled receptor associated sorting proteins (GASPs). Pharmacol. Ther. 126, 244-250.

    Adayev, T., Ray, I., Sondhi, R., Sobocki, T. and Bancrjcc, P. (2003). The G protein-coupled 5-HT1A receptor causes suppression of caspase-3 through MAPK and protein kinase C α. Biochem. Biophys. Acta. 1640, 85-96.

    Ahn, W.S., Bae, S.M., Lee, K.H., Lee, J.M., Namkoong, S.E., Chun, H.J., Kim, C.K. and Kim, Y.W. (2004). Recombinant adenovirus-p53 gene transfer and cell-specific growth suppression of human cervical cancer cells in vitro and in vivo. Gynecol Oncol. 92, 611-621.

    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2002). Molecular biology of the cell, 4th edition, New York: Garland Science.

    Alexander, B.S. and Wood, M.D. (1988). [3H]8-OH-DPAT labels the 5-hydroxytryptamine uptake recognition site and the 5-HT1A binding site in the rat striatum. J. Pharm. Pharmacol. 40, 888-891.

    Alexander, S.P.H., Mathie, A. and Peters, J.A. (2006). Guide to receptors and channels. Br. J. Pharmacol. 147, supplement S68.

    Allen, L. F., Lefkowitz, R. J., Caron, M. G.. and Cotecchia, S. (1991). G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances mitogenesis and tumorigenicity. Proc. Natl. Acad. Sci. U. S. A. 88, 11354-11358.

    Asada, M., Ebihara, S., Yamanda, S., Niu, K., Okazaki, T., Sora, I. and Arai, H. (2009). Depletion of serotonin and selective inhibition of 2B receptor suppressed tumor angiogenesis by inhibiting endothelial nitric oxide synthase and extracellular signal-regulated kinase 1/2 phosphorylation. Neoplasia 11, 408-417.

    Assie, M-B., Cosi, C. and Koek, W. (1999). Correlation between low/high affinity ratios for 5-HT1A receptors and intrinsic activity. Eur. J. Pharmacol. 386, 97-103.

    Ataee, R., Ajdary, S., Zarrindast, M., Rezayat, M. and Hayatbakhsh, M. R. (2010). Anti-mitogenic and apoptotic effects of 5-HT1B receptor antagonist on HT29 colorectal cancer cell line. J. Cancer Res. Clin. Oncol. 136, 1461-1469.

    Baker, J.G. and Hill, S.J. (2007). Multiple GPCR conformations and signalling pathways: implications for antagonist affinity estimates. Trends Pharmacol. Sci. 28, 374-381.

    Baldwin, J.M. (1993). The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 12, 1693-1703.

    Barki-Harrington, L. and Rockman, H. A. (2008). β-Arrestins: multifunctional cellular mediators. Physiology 23, 17-22.

    Berger, M., Gray, J.A. and Roth, B.L. (2009). The expanded biology of serotonin. Annu. Rev. Med. 60, 355-366.

    Bian, D., Su, S., Mahanivong, C., Cheng, R. K., Han, Q., Pan, Z.K., Sun, P. and Huang, S. (2004). Lysophosphatidic acid stimulates ovarian cancer cell migration via a Ras-MEK kinase 1 pathway. Cancer Res. 64, 4209-4217.

    Bjarnadóttir, T.K., Gloriam, D.E., Hellstrand, S.H., Kristiansson, H., Fredriksson, R. and Schiöth, H.B. (2006). Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88, 263–273.

    Bockaert, J. and Pin, J.P. (1999). Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 18, 1723-1729.

    Bonaventure, P., Nepomuceno, D., Kwok, A., Chai, W., Langlois, X., Hen, R., Stark, K., Carruthers, N. and Lovenberg, T.W. (2002). Reconsideration of 5-hydroxytryptamine (5-HT)7 receptor distribution using [3H]5-carboxamidotryptamine and [3H]8-hydroxy-2-(di-n-propylamino)tetraline: analysis in brain of 5-HT1A knockout and 5-HT1A/1B double-knockout mice. J. Pharmacol. Exp. Ther. 302, 240-248.

    Bos, J.L. and Burgering, B.M.T. (2004). Molecular mechanisms in signal transduction and cancer. EMBO reports 5, 855–859.

    Bosier, B. and Hermans, E. (2007). Versatility of GPCR recognition by drugs: from biological implications to therapeutic relevance. Trends Pharmacol. Sci. 28, 438-446.

    Braestrup, C. and Nielsen, M. (1983). Benzodiazepine receptors, in Iversen, L., Iversen,
    S.D. and Snyder, S.H. (eds.): Handbook of Psychopharmacology. Plenum Press,
    pp 285-384.

    Bylund, D.B. and Toews, M.L. (1993). Radioligand binding methods: practical guide and tips. Am. J. Physiol. Lung Cell Mol. Physiol. 265, L421-L429.

    Carli, M., Afkhami-Dastjerdian, S. and Reader, T.A. (1996). [3H]8-OH-DPAT binding and serotonin content in rat cerebral cortex after acute fluoxetine, desipramine, or pargyline. J. Psychiatry Neurosci. 21, 114-122.

    Carroll, J.A., Shaw, J.S. and Wickenden, A.D. (1988). The physiological relevance of low agonist affinity binding at opioid μ-receptors. Br. J. Pharmacol. 94, 625-631.

    Changeux, J.P. (1987). Acetycholine receptor. In Encyclopedia of Neuroscience, ed. Adelman, G. pp. 2-3. Boston: Birkhausser.

    Chen, J.J., Vasko, M.R., Wu, X., Staeva, T.P., Baez,.M., Zgombick, J.M. and Nelson, D.L. (1998). Multiple subtypes of serotonin receptors are expressed in rat sensory neurons in culture. J. Pharmacol. Exp. Ther. 287, 1119-1127.

    Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G., Thian, F. S., Kobilka, T. S., Choi, H. J., Kuhn, P., Weis, W. I., Kobilka, B. K. and Stevens, R. C. (2007). High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258-1265.

    Christopoulos, A. and Kenakin, T. (2002). G protein-coupled receptor allosterism and complexing. Pharmacol. Rev. 54, 323-374.

    Clawges, H.M., Depree, K.M., Parker, E.M. and Graber, S.G. (1997). Human 5-HT1 receptor subtypes exhibit distinct G protein coupling behaviours in membranes from Sf9 cells. Biochemistry 36, 12930−12938.

    Coppe, J. P., Patil, C. K., Rodier, F., Sun, Y., Munoz, D. P., Goldstein, J., Nelson, P. S., Desprez, P. Y. and Campisi, J. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853-2868.

    Costa, J.L. and Murphy, D.L. (1976). Changes in human-platelet storage packet size following incubation with labelled serotonin. Life Sci. 18, 1413-1417.

    Cotton, M. and Claing, A. (2009). G protein-coupled receptors stimulation and the control of cell migration. Cell Signal 21, 1045-1053.

    Cozzi, N. V., Gopalakrishnan, A., Anderson, L. L., Feih, J. T., Shulgin, A. T., Daley, P. F. and Ruoho, A. E. (2009). Dimethyltryptamine and other hallucinogenic tryptamines exhibit substrate behavior at the serotonin uptake transporter and the vesicle monoamine transporter. J. Neural. Transm. 116, 1591-1599.

    D’Allaire F., Atgie, C., Mauriege P., Simard, P-M. and Bukowiecki, L.J. (1995). Characterization of β-1 and β-3 adrenoceptors in intact brown adipocytes of the rat. Br. J. Pharmacol. 114, 275-282.

    Daaka, Y., Pitcher, J.A., Richardson, M., Stoffel, R.H., Robishaw, J.D. and Lefkowitz, R.J. (1997). Receptor and G isoform-specific interactions with G protein-coupled receptor kinases. Proc. Natl. Acad. Sci. U. S. A. 94, 2180-2185.

    Dakubo, G. D., Jakupciak, J.P, Birch-Machin, M.A. and Parr, R.L. (2007). Clinical implications and utility of field cancerization. Cancer Cell Int. 7, 2.

    D'Amato, R.J., Largent, B.L., Snowman, A.M. and Snyder, S.H. (1987). Selective labeling of serotonin uptake sites in rat brain by [3H]citalopram contrasted to labeling of multiple sites by [3H]imipramine. J. Pharmacol. Exp. Ther. 242, 364-371.

    Daubert, E.A. and Condron, B.G.. (2010). Serotonin: a regulator of neuronal morphology and circuitry. Trends Neurosci. 33, 424-434.

    Davies M.N., David, E., Gloriam, D.E., Secker, A., Freitas, A.A., Mendao, M., Timmis J. and Flower, D.R. (2007). Proteomic applications of automated GPCR classification. Proteomics 7, 2800–2814.

    de Boer, S. F. and Koolhaas, J. M. (2005). 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur. J. Pharmacol. 526, 125-139.

    Delcourt, N., Bockaert, J. and Marin, P. (2007). GPCR-jacking: from a new route in RTK signalling to a new concept in GPCR activation. Trends Pharmacol. Sci. 28, 602-607.

    Dizeyi, N., Bjartell, A., Nilsson, E., Hansson, J., Gadaleanu, V., Cross, N. and Abrahamsson, P.A. (2004). Expression of serotonin receptors and role of serotonin in human prostate cancer tissue and cell lines. Prostate 59, 328-336.

    Dizeyi, N., Hedlund, P., Bjartell, A., Tinzl, M., Austild-Taskén, K. and Abrahamsson, PA. (2009). Serotonin activates MAP kinase and PI3K/Akt signaling pathways in prostate cancer cell lines. Urol. Oncol. doi:10.1016/j.urolonc.2009.09.013.

    Dlugosz, A. A. and Talpaz, M. (2009). Following the hedgehog to new cancer therapies. N. Engl. J. Med. 361, 1202-1205.

    Dorsam, R.T. and Gutkind, J.S. (2007). G-protein-coupled receptors and cancer. Nat. Rev. Cancer 7, 79-94.

    Dourish, C. T., Hutson, P. H. and Curzon, G. (1985). Characteristics of feeding induced by the serotonin agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT). Brain Res. Bull. 15, 377-384.

    Drozdov, I., Kidd, M., Gustafsson, B. I., Svejda, B., Joseph, R., Pfragner R. and Modlin, I. M. (2009). Autoregulatory effects of serotonin on proliferation and signaling pathways in lung and small intestine neuroendocrine tumor cell lines. Cancer 115, 4934-4945.

    Ducy, P. and Karsenty, G. (2010). The two faces of serotonin in bone biology. J. Cell Biol. 191, 7-13.

    Fargin, A., Raymond, J.R., Lohse, M.J., Kobilka, B.K., Caron, M.G. and Lefkowitz, R.J. (1988). The genomic clone G-21 which resembles a β–adrenergic receptor sequence encodes the 5HT1A receptor. Nature 335, 358-360.

    Fargin, A., Raymond, J.R., Regan, J.W., Cotecchia, S., Lefkowitz, R.J. and Caron, M.G. (1989). Effect coupling mechanisms of the cloned 5HT1A receptors. J. Biol. Chem. 264, 14848-14852.

    Fay, A-M. L. and Bowie, D. (2006). Concanavalin-A reports agonist-induced conformational changes in the intact GluR6 kainate receptor. J. Physiol. 572, 201–213.

    Feng, J.J., Cheng, F.C., Lin, C.H., Wei, J.W. and Yang, S.D. (2010). Discovery and characterization of [3H]8-OH-DPAT binding to HeLaS3 cells. Arch. Biochem. Biophys. 495, 14-20.

    Filippov, S. (2008). Expression of melatonin and serotonin in human prostate tumors. Bull. Exp. Biol. Med. 145, 256-258.

    Filizola, M., Olmea, O. and Weinstein, H. (2002). Prediction of heterodimerization interfaces of G-protein coupled receptors with a new subtractive correlated mutation method. Protein Eng. 15, 881-885.

    Fishkes, H., and Rudnick, G. (1982). Bioenergetics of serotonin transport by membrane vesicles derived from platelet dense granules. J. Biol. Chem. 257, 5671-5677.

    Flanagan, C. A. (2005). A GPCR that is not “DRY”. Mol. Pharmacol. 68, 1-3.

    Flores, D. G., Ledur, P. F., Abujamra, A. L., Brunetto, A. L., Schwartsmann, G., Lenz, G. and Roesler, R. (2009). Cancer stem cells and the biology of brain tumors. Curr. Stem Cell Res. Ther. 4, 306-313.

    Flower, D. R. (1999). Modelling G-protein-coupled receptors for drug design. Biochim. Biophys. Acta. 1422, 207-234.

    Franco, R., Casado, V., Cortes, A., Mallol, J., Ciruela, F., Ferre, S., Lluis, C. and Cannela, E.I. (2008). G-protein-coupled receptor heteromers: function and ligand pharmacology. Br. J. Pharmacol. 153, S90-S98.

    Franco, R., Casadó, V., Mallol, J., Ferrada, C., Ferré, S., Fuxe, K., Cortés, A., Ciruela, F., Lluis, C. and Canela, E.I. (2006). The two-state dimer receptor model: a general model for receptor dimers. Mol. Pharmacol. 69, 1905-1912.

    Fraunfelder, H., Parak, F. and Young, R.D. (1988). Conformational substrates in proteins. Annu. Rev. Biophys. Biophys. Chem. 17, 451-479.

    Fraunfelder, H., Sligar, S.G. and Wolynes, P.G. (1991). The energy landscapes and motions of proteins. Science 254, 1598-1603.

    Fredriksson, R., Lagerstrom, M.C., Ludin, L.-G.. and Schioth, H.B. (2003). The G-protein-coupled receptors in the human genome from five main families. phylogenetic analysis, paralogon groups and fingerprints. Mol. Pharmacol. 63, 1256-1272.

    Fuessel, S., Weigle, B., Schmidt, U., Baretton, G., Koch, R., Bachmann, M., Rieber, E. P.,Wirth, M.P. and Meye, A. (2006). Transcript quantification of Dresden G protein-coupled receptor (D-GPCR) in primary prostate cancer tissue pairs. Cancer Lett. 236, 95-104.

    Fukuhara, S., Chikumi H., Gutkind J.S. (2001). RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene 20, 1661-1668.

    Galandrin, S., Oligny-Longpré, G.., Bouvier, M. (2007). The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol. Sci. 28, 423-430.

    Garcia-Regalado, A., Guzman-Hernandez, M. L. Ramirez-Rangel, I., Robles-Molina, E., Balla, T., Vazquez-Prado, J. and Reyes-Cruz, G. (2008). G protein-coupled receptor-promoted trafficking of Gbeta1gamma2 leads to AKT activation at endosomes via a mechanism mediated by Gbeta1gamma2-Rab11a interaction. Mol. Biol. Cell 19, 4188-4200.

    Gardner, B. and Strange, P.G.. (1998). Agonist action at D2(long) dopamine receptors: ligand binding and functional assays. Br. J. Pharmacol. 124, 978-984.

    Garrington, T.P. and Johnson, G.L. (1999). Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr. Opin. Cell Biol. 11, 211–218.

    Gavi, S., Sumay, E., Wang, H. and Malbon, C. (2006). G-protein-coupled receptors and
    tyrosine kinases: crossroads in cell signaling and regulation. Trends Endocrinol. Metab.17, 46-52.

    Gerhardt, C.C. and van Heerikhuizen, H. (1997). Functional characteristics of heterologously expressed 5-HT receptors. Eur. J. Pharmacol. 334, 1-23.

    Gershon, M.D. and Tack, J. (2007). The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132, 397-414.

    Gesty-Palmer, D., Chen, M., Reiter, E., Ahn, S., Nelson, C. D., Wang, S., Eckhardt, A. E., Cowan, C. L., Spurney, R. F., Luttrell, L. M. and Lefkowitz, R. J. (2006). Distinct β-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. J. Biol. Chem. 281, 10856-10864.

    Gieseler, F., Lühr, I., Kunze, T., Mundhenke, C., Maass, N., Erhart, T., Denker, M., Beckmann, D., Tiemann, M., Schulte, C., Dohrmann, P., Cavaillé, F., Godeau, F. and Gespach, C. (2007). Activated coagulation factors in human malignant effusions and their contribution to cancer cell metastasis and therapy. Thromb. Haemost. 97, 1023-1030.

    Gilks, C.B., Young, R.H., Gersell, D.J. and Clement, P.B. (1997). Large cell carcinoma of the uterine cervix: a clinicopathologic study of 12 cases. Am. J. Surg. Pathol. 21, 905-914.

    Gloriam, D. E., Fredriksson, R. and Schioth, H. B. (2007). The G protein-coupled receptor subset of the rat genome. BMC Genomics 8, 338.

    Goldsmith, Z.G. and Dhanasekaran, D.N. (2007). G Protein regulation of MAPK networks. Oncogene 26, 3122–3142.

    Gozlan, H., El Mestikawy, S., Pichat, L., Glowinski, J. and Hamon, M. (1983). Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature 305, 140-142.

    Grizzi, F. and Chiriva-Internati, M. (2006). Cancer: looking for simplicity and finding complexity. Cancer Cell Int. 6, 4.

    Guha, S., Eibl, G.., Kisfalvi, K., Fan, R.S., Burdick, M., Reber, H., Hines, O.J., Strieter, R. and Rozengurt, E. (2005). Broad-spectrum G protein-coupled receptor antagonist, [D-Arg1,D-Trp5,7,9,Leu11]SP: a dual inhibitor of growth and angiogenesis in pancreatic cancer. Cancer Res. 65, 2738-2745.

    Gutkind, J. S. (1998). The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J. Biol. Chem. 273, 1839-1842.

    Gutkind, J. S. (2000). Signaling networks and cell cycle control: the molecular basis of cancer and other diseases. Chapter 5, Fukuhara, S. et al., Signaling from G-protein-coupled receptor to the nucleus. Humana Press Inc. Totowa, New Jersey. pp 83-98.

    Hambley, T.W. (2009). Is anticancer drug development heading in the right direction? Cancer Res. 69, 1259-1262.

    Harrison, C. (2006). Anticancer drugs: Downstream GPCR inhibition. Nat. Rev. Drug Discov. 5, 894-895.

    Hill, S.J. (2006). G-protein-coupled receptors: past, present and future. Br. J. Pharmacol. 147, S27–S37.

    Hopkins, A L. and Groom, C. R. (2002). The druggable genome. Nat. Rev. Drug Discov.1, 727-730.

    Hoyer, D., Engel, G. and Kalkman, H.O. (1985). Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: radioligand binding studies with [3H]5-HT, [3H]8-OH-DPAT, (-)[125I]iodocyanopindolol, [3H]mesulergine and [3H]ketanserin. Eur. J. Pharmacol. 118, 13-23.

    Hoyer, D., Hannon, J.P. and Martin, G.R. (2002). Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 71, 533-554.

    Hu, Y., Zhang,Y., Venkitaramani, D. V. and Lombroso, P. J. (2007). Synaptic translation of striatal-enriched tyrosine phosphatase (STEP) after β1-adrenergic receptor stimulation. J. Neurochem. 103, 531-541.

    Huang Y., Zheng, Y., Su, Z. and Gu, X. (2009). Differences in duplication age distributions between human GPCRs and their downstream genes from a network prospective. BMC Genomics 10, S14.

    Humphreys, C. J., Levin, J. and Rudnick, G.. (1988). Antidepressant binding to the porcine and human platelet serotonin transporters. Mol. Pharmacol. 33, 657-663.

    Hurst, J. H. and Hooks, S. B. (2009). Regulator of G-protein signaling (RGS) proteins in cancer biology. Biochem. Pharmacol. 78, 1289-1297.

    IJzerman, Ad P., Wijngaarden, I van. and Soudijn, W. (2001). Allosteric modulation of G-protein-coupled receptors. Expert Opin. Ther. Patents 11, 1889-1904.

    Innamorati, G., Valenti, M.T., Giovinazzo, F., Carbonare, L.D., Parenti, M. and Bassi, C., (2011). Molecular approaches to target GPCRs in cancer therapy. Pharmaceuticals 4, 567-589; doi:10.3390/ph4040567.

    Isbister, G.K., Buckley, N.A. and Whyte, I.M. (2007). Serotonin toxicity: a practical approach to diagnosis and treatment. Med. J. Aust. 187, 361-365.

    Jeong, KJ., Park, S.Y., Seo, J. H., Lee, K.B., Choi, W.S., Han, J. W., Kang, J.K., Park, C.G., Kim, Y. K. and Lee, H.Y. (2008). Lysophosphatidic acid receptor 2 and Gi/Src pathway mediate cell motility through cyclooxygenase 2 expression in CAOV-3 ovarian cancer cells. Exp. Mol. Med. 40, 607-616.

    Jiang, X., Sinnett-Smith, J. and Rozengurt, E. (2009). Carbachol induces p70S6K1 activation through an ERK-dependent but Akt-independent pathway in human colonic epithelial cells. Biochem. Biophys. Res. Commun. 387, 521-524.

    Joffe, H., Partridge, A., Giobbie-Hurder, A., Li, X., Habin, K., Goss, P., Winer, E. and Garber, J. (2010). Augmentation of venlafaxine and selective serotonin reuptake inhibitors with zolpidem improves sleep and quality of life in breast cancer patients with hot flashes: a randomized, double-blind, placebo-controlled trial. Menopause 17, 908-916.

    Joyce, J.A. (2005). Therapeutic targeting of the tumor microenvironment. Cancer Cell 7, 513-520.

    Kakinuma, T. and Hwang, S. T. (2006). Chemokines, chemokine receptors, and cancer metastasis. J. Leukoc. Biol. 79, 639-651.

    Kalipatnapu, S., Pucadyil, T.J., Harikumar, K.G. and Chattopadhyay, A. (2004). Ligand binding characteristics of the human serotonin 1A receptor heterologously expressed in CHO cells. Biosci. Rep. 24, 101-115.

    Kamal, M. and Jockers, R. (2009). Bitopic ligands: all-in-one orthosteric and allosteric. F1000 Bio. Rep. 1, 77.

    Katoh, Y. and Katoh, M. (2009). Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr. Mol. Med. 9, 873-886.

    Kenakin, T.P. (1995). Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol. Sci.16, 232-238.

    Kenakin, T.P. (2005). New concepts in drug discovery: collateral efficacy and permissive antagonism. Nat. Rev. Drug Discov. 4, 919-927.

    Kenakin, T.P. (2007). Collateral efficacy in drug discovery: taking advantage of the good (allosteric) nature of 7TM receptors. Trends Pharmacol. Sci. 28, 407-415.

    Kenakin, T. P. (2008). Seven transmembrane receptors as nature's prototype allosteric protein: de-emphasizing the geography of binding. Mol. Pharmacol. 74, 541-543.

    Kenakin T. P. (2009). '7TM receptor allostery: putting numbers to shapeshifting proteins. Trends Pharmacol. Sci. 30, 460-469.

    Kholodenko, B N., Hancock, J .F. and Kolch, W. (2010). Signalling ballet in space and time. Nat. Rev. Mol. Cell Biol. 11, 414-426.

    Kim, S. S. and Reith, M. E. (1986). Effect of serotonin on the dissociation of high-affinity binding of [3H]imipramine in mouse cerebral cortex. Neurosci. Lett. 67, 123-128.

    Kirui, J. K., Xie, Y., Wolff, D. W., Jiang, H. H., Abel, P. W. and Tu, Y. P. (2010). G beta gamma signaling promotes breast cancer cell migration and invasion. J. Pharmacol. Exp. Ther. 333, 393-403.

    Knight, Z. A.. Lin, H. and Shokat, K. M. (2010). Targeting the cancer kinome through polypharmacology. Nat. Rev. Cancer 10, 130-137.

    Koshland, D.E. Jr., Nemethy, G. and Filmer, D. (1966). Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5, 365–385.

    Koshland, D.E. Jr., Ray,W.J. and Erwin, M. (1958). Protein structure and enzyme action. Fed. Proc. 17, 1145–1150.

    Kozhevnikovaa, L. M. and Avdoninb P.V. (2010). Agonist of serotonin 5HT1A receptors 8-OH-DPAT increases the force of contraction of rat aorta and mesenteric artery in the presence of endothelin-1 or vasopressin and causes relaxation of the vessels preconstricted with noradrenaline. Biol. Bull. 37, 35–43.

    Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. and Campisi, J. (2001). Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl. Acad. Sci. U. S. A. 98, 12072-12077.

    Krupnick, J.G. and Benovic, J.L. (1998). The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu. Rev. Pharmacol. Toxicol. 38, 289-319.

    Krysan, K., Reckamp, K.L., Dalwadi, H., Sharma, S., Rozengurt, E., Dohadwala, M. and Dubinett, S.M. (2005). Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non–small cell lung cancer cells in an epidermal growth factor receptor–independent manner. Cancer Res. 65, 6275-6281.

    Kue, P. F., Taub, J. S., Harrington, L. B., Polakiewicz, R. D., Ullrich, A. and Daaka, Y. (2002). Lysophosphatidic acid-regulated mitogenic ERK signaling in androgen-insensitive prostate cancer PC-3 cells. Int. J. Cancer 102, 572-579.

    Lacivita, E., Leopoldo, M., Berardi, F. and Perrone, R. (2008). 5-HT1A receptor, an old target for new therapeutic agents. Curr. Top Med. Chem. 8, 1024-1034.

    Lagerstrom, M.C. and Schioth, H.B. (2008). Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7, 339-357.

    Lappano, R. and Maggiolini, M. (2011). G protein-coupled receptors: novel targets for drug discovery in cancer. Nat. Rev. Drug Discov. 10, 47-60.

    Larsson, L. G., Renyi, L., Ross, S. B., Svensson, B. and Angeby-Moller, K. (1990). Different effects on the responses of functional pre- and postsynaptic 5-HT1A receptors by repeated treatment of rats with the 5-HT1A receptor agonist 8-OH-DPAT. Neuropharmacology 29, 85-91.

    Lash, T.L., Cronin-Fenton, D., Ahern, T.P., Rosenberg, C.L., Lunetta, K.L., Silliman, R.A., Hamilton-Dutoit, S., Garne, J.P., Ewertz, M., Sørensen, H.T. and Pedersen, L. (2010). Breast cancer recurrence risk related to concurrent use of SSRI antidepressants and tamoxifen. Acta Oncol. 49, 305-312.

    Le,Y., Zhou,Y., Iribarren.P. and Wang, J.M. (2004). Chemokines and chemokine receptors: Their manifold roles in homeostasis and disease. Cell Mol. Immunol. 1, 95-104.

    Lee, H. J., Wall, B. and Chen, S. (2008). G-protein-coupled receptors and melanoma. Pigment Cell Melanoma Res. 21, 415-428.

    Lewis, J.A., Lebois, E.P. and Lindsley, C.W. (2008). Allosteric modulation of kinases and GPCRs: design principles and structural diversity. Curr. Opin. Chem. Biol. 12, 269-280.

    Li, Q., Wichems, C., Heils, A., Van de Kar, L.D., Lesch, K-P. and Murphy, D.L. (1999). Reduction of 5-hydroxytryptamine (5-HT)1A-mediated temperature and neuroendocrine responses and 5-HT1A binding sites in 5-HT transporter knockout mice. J. Pharmacol. Exp. Ther. 291, 999-1007.

    Li, S., Huang, S. and Peng, S. B. (2005). Overexpression of G protein-coupled receptors in cancer cells: involvement in tumor progression. Int. J. Oncol. 27, 1329-1339.

    Liebmann, C. (2004). G protein-coupled receptors and their signaling pathways: classical therapeutical targets susceptible to novel therapeutic concepts. Curr. Pharm. Des. 10, 1937-1958.

    Lodish, H., Berk, A., Matsudaira, P., Kaiser, C.A., Krieger, M., Scott, M. P., Zipursky, S.L. and Darnell, J. (2004). Molecular Cell Biology. 5th edn. W.H. Freeman and Company. New York, pp. 533-570.

    Lucot, J. B. (1994). Antiemetic effects of flesinoxan in cats: comparisons with 8-hydroxy-2-(di-n-propylamino)tetralin. Eur. J. Pharmacol. 253, 53-60.

    Lukasiewicz, S., Blasiak, E., Faron-Gorecka, A., Polit, A., Tworzydlo, M., Gorecki, A., Wasylewski, Z. and Dziedzicka-Wasylewska, M. (2007). Fluorescence studies of homooligomerization of adenosine A2A and serotonin 5-HT1A receptors reveal the specificity of receptor interactions in the plasma membrane. Pharmacol. Rep. 59, 379-392.

    Luscombe, G. P., Martin, K. F., Hutchins, L. J., Gosden, J. and Heal, D. J. (1993). Mediation of the antidepressant-like effect of 8-OH-DPAT in mice by postsynaptic 5-HT1A receptors. Br. J. Pharmacol. 108, 669-677.

    Luttrell, D.K. and Luttrell, L.M. (2004). Not so strange bedfellows: G-protein-coupled
    receptors and Src family kinases. Oncogene 23, 7969-7978.

    Luttrell, L.M., Daaka, Y. and Lefkowitz, R.J. (1999). Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr. Opin. Cell Biol. 11, 177-183.

    Luttrell, L.M. (2006). Transmembrane signaling by G protein-coupled receptors. Methods Mol. Biol. 332, 3-49.

    Marinissen, M.J. and Gutkind, J.S. (2001). G-protein couple receptors and signaling networks: emerging paradigms. Trends Pharmacol. Sci. 22, 368-376.

    McKinney, M. (2003). Practical aspects of radioligand binding. Current protocols in pharmacology. Edited by Enna, S.J., Williams, M., Ferkany J.W., Kenakin, T., Porsolt, R.D. and Sullivan, J. P. Volume 1, John Wiley & Sons, Inc. pp.1.3.1-1.3.33.

    Meng, F., Ueda, Y., Hoversten, M. T., Taylor, L. P., Reinscheid, R. K., Monsma, F. J., Watson, S. J., Civelli, O. and Akil, H. (1998). Creating a functional opioid alkaloid binding site in the orphanin FQ receptor through site-directed mutagenesis. Mol. Pharmacol. 53, 772-777.

    Meyerson, L. R., Ieni, J. R. and Wennogle, L. P. (1987). Allosteric interaction between the site labeled by [3H]imipramine and the serotonin transporter in human platelets. J. Neurochem. 48, 560-565.

    Middlemiss, D.N. and Fozard, J.R. (1983). 8-Hydroxy-2-(di-n-proplyamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur. J. Pharmacol. 90, 151–153.

    Millan, M.J., Marin, P., Bockaert, J. and la Cour, C.M. (2008). Signaling at G-protein-coupled serotonin receptors: recent advances and future research directions. Trends Pharmacol. Sci. 29, 454-464.

    Mohammad-Zadeh, L.F., Moses, L. and Gwaltney-Brant, S.M. (2008). Serotonin: a review. J. Vet. Pharmacol. Ther. 31, 187-199.

    Mongeau, R., Welner, S.A., Quirion, R. and Suranyi-Cadotte, B.E. (1992). Further evidence for differential affinity states of the serotonin1A receptor in rat hippocampus. Brain Res. 590, 229-238.

    Monod, J.,Wyman, J. and Changeux, J. P. (1965). On the nature of allosteric transitions; a plausible model. J. Mol. Biol. 12, 88–118.

    Muller, J.M. (2007). Potential inhibition of the neuro-neoplastic interactions: the clue of a GPCR-targeted therapy. Prog. Exp. Tumor Res. 39, 130-153.

    Nagata, A., Ito, M., Iwata, N., Kuno, J., Takano, H., Minowa, O., Chihara, K., Matsui, T. and Noda, T. (1996). G protein-coupled cholecystokinin-B/gastrin receptors are responsible for physiological cell growth of the stomach mucosa in vivo. Proc. Natl. Acad. Sci. U. S. A. 93, 11825-11830.

    Nenonene, E.K., Radja, F., Carli, M., Grondin, L. and Reader, T.A. (1994). Heterogeneity of cortical and hippocampal 5-HT1A receptors: a reappraisal of homogenate binding with 8-[3H]hydroxydipropylaminotetralin. J. Neurochem. 62, 1822-1834.

    Neubauer, H.A., Hansen, C.G. and Wiborg, O. (2006). Dissection of an allosteric mechanism on the serotonin transporter: a cross-species study. Mol. Pharmacol. 69, 1242-1250.

    Neubig, R.R. (1994). Membrane organization in G-protein mechanisms. FASEB J. 8, 939-946.

    Newman-Tancredi, A., Gavaudan, S., Conte, C., Chaput, C., Touzard, M., Verrièle, L., Audinot, V. and Millan, M.J. (1998). Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [ ]GTPγS binding study. Eur. J. Pharmacol. 355, 245-256.

    Newman-Tancredi, A., Wootton, R. and Strange, P.G. (1992). High-level stable expression of recombinant 5HT1A 5-hydroxytryptamine receptors in Chinese hamster ovary cells. Biochem. J. 285, 933-938.

    Nichols, D.E. and Nichols, C. D. (2008). Serotonin receptors. Chem. Rev. 108, 1614-1641.

    Notcovich, C., Diez, F., Tubio, M. R., Baldi, A., Kazanietz, M.G.., Davio, C. and Shayo, C. (2010). Histamine acting on H1 receptor promotes inhibition of proliferation via PLC, RAC, and JNK-dependent pathways. Exp. Cell Res. 316, 401-411.

    Oldham W.M. and Hamm, H.E. (2006). Structural basis of function in heterotrimeric G proteins. Quat. Rev. Biophys. 39, 117-166.

    Oldham W.M. and Hamm, H.E. (2008). Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60-71.

    Onaran, H.O. and Costa, T. (1997). Agonist efficacy and allosteric models of receptor action. Ann. N.Y. Acad. Sci. 812, 98-115.

    Pai, V.P., Marshall, A.M., Hernandez, L.L. Buckley, A.R. and Horseman, N.D. (2009). Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival. Breast Cancer Res. 11, R81.

    Palm, D., Lang, K., Niggemann, B., Drell, TL. 4th., Masur, K., Zaenker, K.S. and Entschladen, F. (2006).The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by beta-blockers. Int. J. Cancer 118, 2744-2749.

    Panupinthu, N., Lee, H. Y. and Mills, G. B. (2010). Lysophosphatidic acid production and action: critical new players in breast cancer initiation and progression. Br. J. Cancer 102, 941-946.

    Passie, T., Halpern, J.H., Stichtenoth, D.O., Emrich, H.M. and Hintzen, A. (2008). The pharmacology of lysergic acid diethylamide: a review. CNS Neurosci. Ther. 14, 295-314.

    Paterson, L M., Tyacke, R. J., Nutt, D. J. and Knudsen, G. M. (2010). Measuring endogenous 5-HT release by emission tomography: promises and pitfalls. J. Cereb. Blood Flow Metab. 30, 1682–1706.

    Paulmann, N., Grohmann, M., Voigt, J. P., Bert, B., Vowinckel, J., Bader, M., Skelin, M., Jevsek, M., Fink, H., Rupnik M. and Walther, D.J. (2009). Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation. PLoS Biol. 7 (10) e1000229.

    Perez, D. M. (2005). From plants to man: the GPCR "tree of life" Mol. Pharmacol. 67, 1383-1384.

    Peroutka, S.J. (1993). 5-Hydroxytryptamine receptors. J. Neurochem. 60, 408-416.

    Pierce, K.L., Premont, R. T. and Lefkowitz, R. J. (2002). Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639-650.

    Plenge, P., Mellerup, E. T. and Laursen, H. (1991). Affinity modulation of [3H]imipramine, [3H]paroxetine and [3H]citalopram binding to the 5-HT transporter from brain and platelets. Eur. J. Pharmacol. 206, 243-250.

    Pou, C., Nenonene, E.K., Reader, T.A. and Fargin, A. (1997). The human 5-HT1A receptor: comparison of its binding properties in transfected cells and cortical tissue. Gen. Pharmac. 29, 737-747.

    Puck, T.T. and Fisher, H.W. (1956). Genetics of somatic mammalian cells: I. Demonstration of the existence of mutants with different growth requirements in a human cancer cell strain HeLa. J. Exp. Med. 104, 427-434.

    Puck, T.T. and Marcus, P.I. (1955). A rapid method for viable cell titration and clone production with HeLa cells in tissue culture: the use of X-irradiated cells to supply conditioning factors. Proc. Natl. Acad. Sci. U.S.A. 41, 432-437.

    Puck, T.T., Marcus, P.I. and Cieciura, S.J. (1956). Clonal growth of mammalian cells in vitro: growth characteristics of colonies from single HeLa cells with and without a "feeder" layer. J. Exp. Med. 103, 273-284.

    Rajagopal, S., Rajagopal, K. and Lefkowitz, R J. (2010). Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat. Rev. Drug Discov. 9, 373-386.

    Rajaraman, R., Guernsey, D., Rajaraman, M. and Rajaraman, S. (2006). Stem cells, senescence, neosis and self-renewal in cancer. Cancer Cell Int. 6, 25.

    Raymond, J.R., Fargin, A., Middleton, J.P., Graff, J.M., Haupt, D.M., Caron, M.G., Lefkowitz, R.J. and Dennis, V.W. (1989). The human 5-HT1A receptor expressed in HeLa cells stimulates sodium-dependent phosphate uptake via protein kinase C. J. Biol. Chem. 264, 21943-21950.

    Raymond, J.R., Mukhin, Y.V., Gelasco, A., Turner, J., Collinsworth, G., Gettys, T.W., Grewal, J.S. and Garnovskaya, M.N. (2001). Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol. Ther. 92, 179-212.

    Raymond, J.R., Mukhin, Y.V., Gettys, T.W. and Garnovskaya, M.N. (1999). The recombinant 5HT1A receptor: G protein coupling and signaling pathways. Br. J. Pharmacol. 127, 1751-1764.

    Reiter, E. and Lefkowitz, R. J. (2006). GRKs and b-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol. Metab. 17, 159–165.

    Rocheville, M., Lange, D. C., Kumar, U., Patel, S. C., Patel, R. C. and Patel, Y. C. (2000). Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288, 154-157.

    Rohatgi, R., Milenkovic, L., Corcoran, R. B. and Scott, M. P. (2009). Hedgehog signal transduction by smoothened: pharmacologic evidence for a 2-step activation process. Proc. Natl. Acad. Sci. U. S. A. 106, 3196-3201.

    Rompler, H., Staubert, C., Thor, D., Schulz, A., Hofreiter, M. and Schoneberg, T. (2007). G protein-coupled time travel: evolutionary aspects of GPCR research. Mol. Interv. 7, 17-25.

    Ronkainen, H., Soini, Y., Vaarala, M., Kauppila, S. and Hirvikoski, P. (2010). Evaluation of neuroendocrine markers in renal cell carcinoma. Diagn. Pathol. 5, 28.

    Rosenbaum, D.M., Rasmussen, S.G.F. and Kobilka, B.K. (2009). The structure and function of G-protein-coupled receptors. Nature 459, 356-363.

    Rosenkilde, M.M., Kledal, T.N. and Schwartz, T.W. (2005). High constitutive activity of a virus-encoded seven transmembrane receptor in the absence of the conserved DRY
    motif (Asp-Arg-Tyr) in transmembrane helix 3. Mol. Pharmacol. 68, 11–19.

    Rothman, R.B., Silverthorn, M.L., Glowa, J.R., Matecka, D., Rice, K.C., Carroll, F.V., Partilla, J.S., Uhl, G.R., Vandenbergh, D.J. and Dersch, C.M. (1998). Studies of the biogenic amine transporter. VII. Characterization of a novel cocaine binding site identified [125I]RTI-55 in membranes prepared from human, monkey and guinea pig caudate. Synapse 28, 322-338.

    Rozengurt, E. (2007). Mitogenic signaling pathways induced by G protein-coupled receptors. J. Cell Physiol. 213, 589-602.

    Rubin, L. L. and de Sauvage, F. J. (2006). Targeting the Hedgehog pathway in cancer. Nat. Rev. Drug Discov. 5, 1026-1033.

    Sagar, J., Chaib, B., Sales, K., Winslet, M. and Seifalian, A. (2007). Role of stem cells in cancer therapy and cancer stem cells: a review. Cancer Cell Int. 7, 9.

    Salim, K., Fenton, T., Bacha, J., Urien-Rodriguez, H., Bonnert, T., Skynner, H.A., Watts, E., Kerby, J., Heald, A., Beer, M., McAllister, G. and Guest P.C. (2002). Oligomerization of G-protein-coupled receptor shown by selective co-immunoprecipitation. J. Biol. Chem. 277, 15482-15485.

    Santiskulvong, C., Sinnett-smith, J. and Rozengurt, E. (2001). EGF receptor function is required in late G1 for cell cycle progression induced by bombesin and bradykinin. Am. J. Physiol. Cell Physiol. 281, C886–C898.

    Santiskulvong, C., Sinnett-smith, J. and Rozengurt, E. (2004). Insulin reduces the requirement for EGFR transactivation in bombesin-induced DNA synthesis. Biochem. Biophys. Res. Commun. 318, 826-832.

    Sarmiento, J., Kypreos, K.E., Prado, G. N., Suetomi, K., Stanzel, C., Maxwell, C., Shumate, D., Tandang-Silvas, M. R., Rajarathnam, K and Navarro, J. (2009). Adenovirus mediated expression "in vivo" of the chemokine receptor CXCR1. J. Struct. Funct. Genomics 10, 17-23.

    Sato, G., Fisher, H.W. and Puck T.T. (1957). Molecular growth requirements of single mammalian cells. Science 126, 961-964.

    Scheffel, U., Dannals, R.F., Cline, E.J., Ricaurte, G.A., Carroll, F.I., Abraham, P., Lewin, A.H. and Kuhar, M.J. (1992). [123/125I]RTI-55, an in vivo label for the serotonin transporter. Synapse 11, 134-139.

    Schloss, P. and Betz, H. (1995). Heterogeneity of antidepressant binding sites on the recombinant rat serotonin transporter SERT1. Biochemistry 34, 12590-12595.

    Schmid, C. L. and Bohn, L. M. (2010). Serotonin, but not N-Methyltryptamines, activates the serotonin 2A receptor via a β-arrestin2/Src/Akt signaling complex in vivo. J. Neurosci. 30, 13513-13524.

    Schoemaker, H. and Langer, Z. (1988). [3H]8-OH-DPAT labells the serotonin transporter in the rat striatum. Eur. J. Pharmacol. 124, 371-373.

    Schreiber, R. and De Vry, J. (1993). Neuronal circuits involved in the anxiolytic effects of the 5-HT1A receptor agonists 8-OH-DPAT ipsapirone and buspirone in the rat. Eur. J. Pharmacol. 249, 341-351.

    Seifert, R. and Dove, S. (2009). Functional selectivity of GPCR ligand stereoisomers: new pharmacological opportunities. Mol. Pharmacol. 75, 13-18.

    Seifert, R. and Wenzel-Seifert, K. (2002). Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn-Schmiedebergs Arch. Pharmacol. 366, 381-416.

    Serafeim, A., Holder, M. J., Grafton, G., Chamba, A., Drayson, M. T., Luong, Q. T., Bunce, C. M., Gregory, C. D., Barnes, N. M. and Gordon, J. (2003). Selective serotonin reuptake inhibitors directly signal for apoptosis in biopsy-like Burkitt lymphoma cells. Blood 101, 3212-3219.

    Shearman, L.P., McReynolds, A.M., Zhou, F.C. and Meyer, J.S. (1998). Relationship between [125I]RTI-55-labeled cocaine binding sites and the serotonin transporter in rat placenta. Am. J. Physiol. Cell Physiol. 275, C1621-C1629.

    Shenoy, S. K. and Lefkowitz, R. J. (2005). Angiotensin II-stimulated signaling through G proteins and beta-arrestin. Sci. STKE. (311), cm14.

    Shevtsov, S. P., Haq, S. and Force, T. (2006). Activation of beta-catenin signaling pathways by classical G-protein-coupled receptors: Mechanisms and consequences in cycling and non-cycling cells. Cell Cycle 5, 2295-2300.

    Siddiqui, E.J., Shabbir, M.A., Mikhailidis, D.P., Mumtaz, F.H. and Thompson, C.S. (2006). The effect of serotonin and serotonin antagonists on bladder cancer cell proliferation. BJU Int. 97, 634-639.

    Siddiqui, E.J., Thompson, C.S., Mikhailidis, D.P. and Mumtaz, F.H. (2005). The role of serotonin in tumor growth (review). Oncol. Rep. 14, 1593-1597.

    Singh, J.K., Chromy, B.A., Boyers, M.J., Dawson, G. and Banerjee, P. (1996). Induction of the serotonin 1A receptor in neuronal cells during prolonged stress and degeneration. J. Neurochem. 66, 2361-2372.

    Singh, S., Sadanandam, A. and Singh, R. K. (2007). Chemokines in tumor angiogenesis and metastasis. Cancer Metastasis Rev. 26, 453-467.

    Spiegelberg, B.D. and Hamm, H.E. (2007). Roles of G-protein-coupled receptor signaling in cancer biology and gene transcription. Curr. Opin. Genet. Dev. 17, 40-44.

    Sprouse, J., Reynolds, L., Li, X., Braselton, J. and Schmidt, A. (2004). 8-OH-DPAT as a 5-HT7 agonist: phase shifts of the circadian biological clock through increases in cAMP production. Neuropharmacology 46, 52-62.

    Suga, H. and Haga, T. (2007). Ligand screening system using fusion proteins of G protein-coupled receptors with G protein alpha subunits. Neurochem. Int. 51, 140-164.

    Susana, R N., Prahlad, T R. and Ravi, I. (2002). G protein pathways. Science 1636-1639.

    Sutherland A., Mirjolet, J.F., Maho, A. and Parmentier, M. (2007). Expression of the chemokine receptor CCR6 in the Lewis lung carcinoma (LLC) cell line reduces its metastatic potential in vivo. Cancer Gene Ther.14, 847-857.

    Tamamura, H., Tsutsumi, H., Masuno, H. and Fujii, N. (2007). Development of low molecular weight CXCR4 antagonists by exploratory structural tuning of cyclic tetra- and pentapeptide-scaffolds towards the treatment of HIV infection, cancer metastasis and rheumatoid arthritis. Curr. Med. Chem. 14, 93-102.

    U'Prichard, D.C. and Snyder, S.H. (1978). Catecholamine binding to CNS adrenergic receptors. J. Supramol. Struct. 9, 189-206.

    Valant, C., Gregory, K. J., Hall, N. E., Scammells, P. J., Lew, M. J., Sexton, P. M. and Christopoulos, A. (2008). A novel mechanism of G protein-coupled receptor functional selectivity. Muscarinic partial agonist McN-A-343 as a bitopic orthosteric/allosteric ligand. J. Biol. Chem. 283, 29312-29321.

    Valerie, P. S., Tammy, M. S., Sarah, A. S. and Joan Heller, B. (2000). The role of Rho in G protein-coupled receptor signal transduction. Annu. Rev. Pharmacol. Toxicol. 40, 459-489.

    van Biesen, T., Luttrell, L. M., Hawes, B. E. and Lefkowitz, R. J. (1996). Mitogenic signaling via G protein-coupled receptors. Endocr. Rev. 17, 698-714.

    Varmus, H. (2006). The new era in cancer research. Science 312, 1162-1165.

    Vicaut, E., Laemmel, E. and Stücker, O. (2000). Impact of serotonin on tumour growth. Ann. Med. 32, 187-194.

    Walther, D.J., Peter, J.U., Winter, S., Höltje, M., Paulmann, N., Grohmann, M., Vowinckel, J., Alamo-Bethencourt, V., Wilhelm, C.S., Ahnert-Hilger, G. and Bader, M. (2003). Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell 115, 851-862.

    Wang, L., Martin, B., Brenneman, R., Luttrell, L. M. and Maudsley, S. (2009). Allosteric modulators of g protein-coupled receptors: future therapeutics for complex physiological disorders. J. Pharmacol. Exp. Ther. 331, 340-348.

    Watson, J., Collin, L., Ho, M., Riley, G., Scott, C., Selkirk, J.V. and Price, G.W. (2000). 5-HT1A receptor agonist-antagonist binding affinity difference as a measure of intrinsic activity in recombinant and native tissue systems. Br. J. Pharmacol. 130, 1108–1114.

    Watts, S.W., Priestley, J.R.C. and Thompson, J.M. (2009). Serotonylation of vascular proteins important to contraction. PLoS One. 4(5):e5682. doi:10.1371/journal.pone.0005682.

    Wei, H., Ahn, S., Shenoy, S. K., Karnik, S. S., Hunyady, L., Luttrell, L. M. and Lefkowitz, R. J. (2003). Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc. Natl. Acad. Sci. U. S. A. 100, 10782-10787.

    Wennogle, L. P. and Meyerson, L. R. (1985). Serotonin uptake inhibitors differentially modulate high affinity imipramine dissociation in human platelet membranes. Life Sci. 36, 1541-1550.

    Wetzker, R. and Böhmer, F-D. (2003). Transactivation joins multiple tracks to the ERK/MAPK cascade. Nat. Rev. Mol. Cell Bio. 4, 651-657.

    Whitty, A. (2008). Cooperativity and biological complexity. Nat. Chem. Biol. 4, 435-439.

    Williams, L. T., Snyderman, R. and Lefkowitz, R. J. (1976). Identification of beta-adrenergic receptors in human lymphocytes by (-) (3H) alprenolol binding. J. Clin. Invest. 57, 149-155.

    Wong, S. K. (2003). G protein selectivity is regulated by multiple intracellular regions of GPCRs. Neurosignals 12, 1-12.

    www.WHO.int/cancer/en/ (2010).

    Wu, B., Chien, E.Y., Mol, C.D., Fenalti, G., Liu, W., Katritch, V., Abagyan, R., Brooun, A., Wells, P., Bi, F.C., Hamel, D.J., Kuhn, P., Handel, T.M., Cherezov, V. and Stevens, R.C. (2010). Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330, 1066-1071.

    Xu, W., Tamim, H., Shapiro, S., Stang, M.R. and Collet, J.P. (2006). Use of antidepressants and risk of colorectal cancer: a nested case-control study. Lancet Oncol. 7, 301-308.

    Young, D., Waitches, G.., Birchmeier, C., Fasano, O. and Wigler, M. (1986). Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 45, 711–719.

    Zhang, H., Xu, X., Gajewiak, J., Tsukahara, R., Fujiwara, Y., Liu, J., Fells, JI., Perygin, D., Parrill, AL., Tigyi, G. and Prestwich, G.D. (2009). Dual activity lysophosphatidic acid receptor pan-antagonist/autotaxin inhibitor reduces breast cancer cell migration in vitro and causes tumor regression in vivo. Cancer Res. 69, 5441-5449.

    Zhang, Y., Scoumanne, A. and Chen, X. (2010). G Protein-Coupled Receptor 87: a promising opportunity for cancer drug discovery. Mol. Cell Pharmacol. 2, 111-116.

    Zhong, H. and Neubig, R.R. (2001). Regulator of G protein signaling proteins: novel multifunctional drug targets. J. Pharmacol. Exp. Ther. 297, 837-845.

    Zhou, M., Engel, K. and Wang, J. (2007). Evidence for significant contribution of a newly identified monoamine transporter (PMAT) to serotonin uptake in the human brain. Biochem. Pharmacol. 73, 147-154.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE