簡易檢索 / 詳目顯示

研究生: 吳嘉茂
Chia-Mao Wu
論文名稱: 人類嗜伊紅血球陽離子蛋白進入細胞及毒性機制
Mechanism of cell entry ability and signal peptide toxicity of human eosinophil cationic protein
指導教授: 張大慈
Margaret Dah-Tsyr Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 101
中文關鍵詞: 嗜伊紅血球嗜伊紅血球陽離子蛋白生長抑制細胞毒性訊號序列蛋白質水解脢訊號序列水解酵素
外文關鍵詞: eosinophil, eosinophil cationic protein, growth inhibition, cytotoxicity, signal peptide, carboxypeptidase E, signal peptide peptidase
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類嗜伊紅血球陽離子蛋白是嗜伊紅血球顆粒中蛋白之主要組成之一,它通常被當作氣喘或過敏性疾病之臨床生物診斷指標。文獻指出嗜伊紅血球陽離子蛋白是由活化的嗜伊紅血球中所分泌的一個毒性蛋白。嗜伊紅血球陽離子蛋白已經被證實可以損害許多不同組織的細胞膜,但目前造成這種損害的機制並不清楚。在此論文中我們利用蛋白質重組技術融合嗜伊紅血球陽離子蛋白、綠色螢光蛋白及組胺酸標示,並成功利用大腸桿菌表現此一融合蛋白(mECP-eGFP-6H)。經由組胺酸標示親和性管柱層析純化過後之融合蛋白加入大白鼠神經內分泌細胞株(GH3)中,並藉此觀察嗜伊紅血球陽離子蛋白進入神經內分泌細胞的能力。我們發現嗜伊紅血球陽離子蛋白融合蛋白不僅可進入神經內分泌細胞中還可以抑制細胞的生長,其IC50為0.8微莫爾濃度。此外,我們利用酵母菌雙雜和及免疫沈澱的實驗方法篩選出一個蛋白質C端水解脢(CPE),並證實它和嗜伊紅血球陽離子蛋白間有直接的蛋白質-蛋白質交互作用。我們更進一步證實在CPE胺基酸序列中第318到387的胺基酸序列片段在此蛋白質-蛋白質作用中扮演不可或缺的角色,此一胺基酸序列片段在CPE中的功能目前並不明。除此之外,我們利用大量表現CPE突變蛋白(preproHA-CPES471A,E472A)的方法阻止其由細胞膜上回收的步驟,藉此可抑制嗜伊紅血球陽離子蛋白融合蛋白進入細胞的能力。由此可證,嗜伊紅血球陽離子蛋白進入細胞的機制與CPE在細胞中的回收過程有關。另一方面,過去已經有許多文獻針對成熟嗜伊紅血球陽離子蛋白特性的研究被發表,然而目前並沒有對嗜伊紅血球陽離子蛋白的前導序列(signal peptide)的研究。我們利用在大腸桿菌、嗜甲醇酵母菌及人類上皮腫瘤細胞中表現數個在胺基端含有嗜伊紅血球陽離子蛋白前導序列的融合蛋白來研究嗜伊紅血球陽離子蛋白的前導序列的功能。我們發現到表現數嗜伊紅血球陽離子蛋白前導序列融合蛋白會造成大腸桿菌及嗜甲醇酵母菌的生長抑制,然而對人類上皮腫瘤細胞卻沒有此一影響。藉由分析嗜伊紅血球陽離子蛋白前導序列的氨基酸序列及利用試管內轉錄/轉譯的實驗方式,我們也發現到嗜伊紅血球陽離子蛋白前導序列可能是人類蛋白質前導序列水解脢(human signal peptide peptidase)的受質,它是一個位於內質網膜上的蛋白質水解脢。此外,以小型干擾核醣核酸(siRNA)的方式壓制人類蛋白質前導序列水解脢的表現後,表現嗜伊紅血球陽離子蛋白前導序列融合蛋白的人類上皮腫瘤細胞也出現生長抑制的情形。另一方面,在表現嗜伊紅血球陽離子蛋白前導序列融合蛋白的嗜甲醇酵母菌中同時表現人類蛋白質前導序列水解脢可以讓酵母菌的生長恢復。總而言之,此論文中我們發現了CPE協助嗜伊紅血球陽離子蛋白進入神經內分泌細胞的新功能,經由此胞飲作用進入細胞中的嗜伊紅血球陽離子蛋白因此可抑制細胞的生長。此外,我們亦發現嗜伊紅血球陽離子蛋白前導序列是一個毒性氨基酸序列,而細胞中表現的蛋白質前導序列水解脢可以保護細胞不被嗜伊紅血球陽離子蛋白前導序列的毒性影響。


    Eosinophil cationic protein (ECP) is a major component of eosinophil granule proteins and is used as a clinical bio-marker for asthma and allergic inflammatory disease. ECP has been implicated in damage to the cell membrane of many tissue types, but the mechanism is not well known. In this study, mECP-eGFP-6H, a recombinant fusion protein containing mature ECP (mECP), green fluorescence protein (eGFP) and Histag, has been expressed, purified and added to GH3 neuroendocrine cells to study the internalization ability of ECP. We found that mECP-eGFP-6H entered into GH3 neuroendocrine cells and inhibited the growth of the cells with the IC50 of 0.8 □M. By yeast two-hybrid screening and immunoprecipitation, we have identified a specific protein-protein interaction between mature mECP and carboxypeptidase E (CPE), a well characterized metalloprotease. Further in vivo yeast two-hybrid screening has also revealed that residues 318 to 387 located in a region of unknown function in mature CPE are indispensable for association with mECP. In addition, the uptake of mECP-eGFP-6H is suppressed by dominant-negative expression of the recycling defect mutant preproHA-CPES471A,E472A in GH3 cells, suggesting that the entrance of mECP-eGFP-6H is associated with the recycling of CPE in GH3 cells. On the other hand, the properties of mature ECP have been well studied but that of the signal peptide of ECP (ECPsp) are not clear. In this thesis, several chimeric proteins containing N-terminal fusion of ECPsp were generated, and introduced into Escherichia coli, Pichia pastoris and human epidermoid carcinoma cell line A431 to study the function of ECPsp. We found that expression of ECPsp chimeric proteins inhibited the growth of E. coli and P. pastoris but not A431 cells. Primary sequence analysis and in vitro transcription/translation of ECPsp have revealed that it is a potential substrate for human signal peptide peptidase (hSPP), an intramembrane protease located in endoplasmic reticulum. In addition, knockdown of the hSPP mRNA expression in ECPsp-eGFP/A431 cells caused the growth inhibitory effect, whereas complementary expression of hSPP in Pichia pastoris system rescued the cell growth. Taken together, we have demonstrated that CPE possesses a novel function to facilitate the entry of ECP to neuroendocrine cell, and such endocytosis process allows the cytotoxic ECP to inhibit growth of the target cells. In addition, we also demonstrated that ECPsp is a toxic signal peptide, and expression of hSPP protects the cells from growth inhibition.

    中文摘要………………………………………………………………………………………1 Abstract ……………………………………………………………………………..............3 Abbreviations……………………………………………………………………………….5 Chapter 1 Background…………………………………………………………………….7 1-1. Human ribonuclease A superfamily…………………………………………………7 1-2. Eosinophils………………………………….……………………………………….7 1-2-1. Biological function of eosinophil…………………………………………………8 1-2-2. Component of eosinophils granule protein………………………………….…….8 1-2-3. Eosinophil granule ribonucleases………………………………………………....9 Chapter 2 The Cell entry of Eosinophil Cationic Protein………………..…………...…..11 2-1. Introduction………………………………………………………………………...11 2-2. Materials and Methods…………………………………………………….………14 2-2-1. Cell culture and transfection…………………………………………………….14 2-2-2. Preparation of recombinant mECP-eGFP-6H and eGFP-6H fusion proteins…..14 2-2-3. MTT assay for GH3 cell growth………………………………………………..15 2-2-4. Uptake of mECP-eGFP6H into GH3 cells……………………………………...16 2-2-5. Yeast two-hybrid assay………………………………………………………….16 2-2-6. Constructions of CPE deletion mutants……………………………………….....18 2-2-7. Immunoprecipitation and Western blot analysis………………………………...18 2-2-8. Construction of preproHA-CPES471A,E472A mutation……………………………..19 2-3. Results……………………………………………………………………………...20 2-3-1. Preparation of Recombinant mECP-eGFP-6H and eGFP-6H…………………...20 2-3-2. mECP-eGFP-6H inhibits the growth of neuroendocrine cells…………………..20 2-3-3. Secretagogues and lysosomotrophic agents affect mECP-eGFP-6H uptake into cells……………………………………………………………………………..21 2-3-4. CPE interacts with mature ECP in yeast cells…………………………………...22 2-3-5. mECP is associated with CPE in vitro…………………………………………..22 2-3-6. The region from 318 to 387 of mature CPE is indispensable for association with mECP in yeast…………………………………………………………………..23 2-3-7. The uptake of mECP-eGFP-6H fusion protein is blocked by dominant-negative expression of the preproHA-CPES471A,E472A in GH3 cells………………………24 2-4. Discussion……………………………………………………………………….…26 Chapter 3 The Toxicity of Eosinophil Cationic Protein Signal Peptide……………….41 3-1. Introduction…………………………………………………………………….….41 3-2. Materials and Methods……………………………………………………………44 3-2-1. Cell culture………………………………………………………………………44 3-2-2. RNA isolation, RT-PCR and Northern blotting…………………………………44 3-2-3. Plasmids preparation for E. coli, P. pastori and mammalian expression systems………………………………………………………………………….46 3-2-4. Construction of recombinant pSilencer expressing siRNA205 specific to hSPP......................................................................................................................47 3-2-5. Transfection……………………………………………………………………...48 3-2-6. In vitro transcription and translation…………………………………………….48 3-2-7. Monitoring the cell proliferation by MTT assay…………………………..…….49 3-2-8. eGFP detection by fluorescence microscopy and Western blotting……………..50 3-2-9. De novo protein synthesis in P. pastoris……………………………………..….50 3-3. Result………………………………………………………………………………52 3-3-1. Expression of ECPsp chimeric proteins causes the growth inhibitory effect on E. coli and P. pastoris cells………………………………………………………….52 3-3-2. Expression of ECPsp chimeric proteins in mammalian cell line A431 do not cause the growth inhibitory effect………………………………………………….….53 3-3-3. ECPsp is a potential substrate for signal peptide peptidase in vitro……………..54 3-3-4. Human SPP mRNA was expressed in ECPsp-eGFP/A431 stable clone and HL60 clone- 15………………………………………………………………………..55 3-3-5. Knockdown of the hSPP mRNA level in ECPsp-eGFP/A431 stable clone decreased the proliferation rate………………………………………………....55 3-3-6. Complementary expression of human SPP restores the growth of ECPsp-eGFP/GS115…………………………………………………………….56 3-4. Discussion………………………………………………………………………….57 Chapter 4 Conclusion……………………………………………………………………….72 References……………………………………………………………………………...……75 Appendix…………………………………………………………………………………….85 Supplement figures………………………………………………………………………..89

    [1] G. J. Gleich, and C. R. Adolphson, The eosinophilic leukocyte: structure and function, Adv Immunol 39 (1986) 177-253.
    [2] C. Kroegel, J. A. Warner, J. C. Virchow, Jr., and H. Matthys, Pulmonary immune cells in health and disease: the eosinophil leucocyte (Part II), Eur Respir J 7 (1994) 743-760.
    [3] M. A. Giembycz, and M. A. Lindsay, Pharmacology of the eosinophil, Pharmacol Rev 51 (1999) 213-340.
    [4] A. J. Wardlaw, R. Moqbel, and A. B. Kay, Eosinophils: biology and role in disease, Adv Immunol 60 (1995) 151-266.
    [5] J. Bousquet, P. Chanez, A. M. Campbell, A. M. Vignola, and P. Godard, Cellular inflammation in asthma, Clin Exp Allergy 25 Suppl 2 (1995) 39-42.
    [6] S. J. Ackerman, D. A. Loegering, P. Venge, I. Olsson, J. B. Harley, A. S. Fauci, and G. J. Gleich, Distinctive cationic proteins of the human eosinophil granule: major basic protein, eosinophil cationic protein, and eosinophil-derived neurotoxin, J Immunol 131 (1983) 2977-2982.
    [7] M. S. Peters, M. Rodriguez, and G. J. Gleich, Localization of human eosinophil granule major basic protein, eosinophil cationic protein, and eosinophil-derived neurotoxin by immunoelectron microscopy, Lab Invest 54 (1986) 656-662.
    [8] J. G. Grantham, J. A. Meadows, 3rd, and G. J. Gleich, Chronic eosinophilic pneumonia. Evidence for eosinophil degranulation and release of major basic protein, Am J Med 80 (1986) 89-94.
    [9] J. Bousquet, P. Chanez, J. Y. Lacoste, G. Barneon, N. Ghavanian, I. Enander, P. Venge, S. Ahlstedt, J. Simony-Lafontaine, P. Godard, and et al., Eosinophilic inflammation in asthma, N Engl J Med 323 (1990) 1033-1039.
    [10] D. T. Durack, S. J. Ackerman, D. A. Loegering, and G. J. Gleich, Purification of human eosinophil-derived neurotoxin, Proc Natl Acad Sci U S A 78 (1981) 5165-5169.
    [11] K. Fredens, R. Dahl, and P. Venge, The Gordon phenomenon induced by the eosinophil cationic protein and eosinophil protein X, J Allergy Clin Immunol 70 (1982) 361-366.
    [12] U. Gullberg, B. Widegren, U. Arnason, A. Egesten, and I. Olsson, The cytotoxic eosinophil cationic protein (ECP) has ribonuclease activity, Biochem Biophys Res Commun 139 (1986) 1239-1242.
    [13] G. J. Gleich, D. A. Loegering, M. P. Bell, J. L. Checkel, S. J. Ackerman, and D. J. McKean, Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease, Proc Natl Acad Sci U S A 83 (1986) 3146-3150.
    [14] H. F. Rosenberg, Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity, J. Biol. Chem. 270 (1995) 7876-7881.
    [15] T. Maeda, K. Mahara, M. Kitazoe, J. Futami, A. Takidani, M. Kosaka, H. Tada, M. Seno, and H. Yamada, RNase 3 (ECP) is an extraordinarily stable protein among human pancreatic-type RNases, J. Biochem. (Tokyo) 132 (2002) 737-742.
    [16] H. F. Rosenberg, The eosinophil ribonucleases, Cell Mol Life Sci 54 (1998) 795-803.
    [17] R. I. Lehrer, D. Szklarek, A. Barton, T. Ganz, K. J. Hamann, and G. J. Gleich, Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein, J Immunol 142 (1989) 4428-4434.
    [18] K. J. Hamann, G. J. Gleich, J. L. Checkel, D. A. Loegering, J. W. McCall, and R. L. Barker, In vitro killing of microfilariae of Brugia pahangi and Brugia malayi by eosinophil granule proteins, J Immunol 144 (1990) 3166-3173.
    [19] K. J. Hamann, R. L. Barker, D. A. Loegering, and G. J. Gleich, Comparative toxicity of purified human eosinophil granule proteins for newborn larvae of Trichinella spiralis, J Parasitol 73 (1987) 523-529.
    [20] S. Motojima, E. Frigas, D. A. Loegering, and G. J. Gleich, Toxicity of eosinophil cationic proteins for guinea pig tracheal epithelium in vitro, Am Rev Respir Dis 139 (1989) 801-805.
    [21] K. Fredens, H. Dybdahl, R. Dahl, and U. Baandrup, Extracellular deposit of the cationic proteins ECP and EPX in tissue infiltrations of eosinophils related to tissue damage, Apmis 96 (1988) 711-719.
    [22] D. T. Durack, S. M. Sumi, and S. J. Klebanoff, Neurotoxicity of human eosinophils, Proc Natl Acad Sci U S A 76 (1979) 1443-1447.
    [23] J. D. Young, C. G. Peterson, P. Venge, and Z. A. Cohn, Mechanism of membrane damage mediated by human eosinophil cationic protein, Nature 321 (1986) 613-616.
    [24] H. F. Rosenberg, Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity, J Biol Chem 270 (1995) 7876-7881.
    [25] R. L. Barker, D. A. Loegering, R. M. Ten, K. J. Hamann, L. R. Pease, and G. J. Gleich, Eosinophil cationic protein cDNA. Comparison with other toxic cationic proteins and ribonucleases, J Immunol 143 (1989) 952-955.
    [26] T. Maeda, M. Kitazoe, H. Tada, R. de Llorens, D. S. Salomon, M. Ueda, H. Yamada, and M. Seno, Growth inhibition of mammalian cells by eosinophil cationic protein, Eur J Biochem 269 (2002) 307-316.
    [27] T. Maeda, K. Mahara, M. Kitazoe, J. Futami, A. Takidani, M. Kosaka, H. Tada, M. Seno, and H. Yamada, RNase 3 (ECP) Is an Extraordinarily Stable Protein among Human Pancreatic-Type RNases, J Biochem (Tokyo) 132 (2002) 737-742.
    [28] G. Mallorqui-Fernandez, J. Pous, R. Peracaula, J. Aymami, T. Maeda, H. Tada, H. Yamada, M. Seno, R. de Llorens, F. X. Gomis-Ruth, and M. Coll, Three-dimensional crystal structure of human eosinophil cationic protein (RNase 3) at 1.75 A resolution, J Mol Biol 300 (2000) 1297-1307.
    [29] T. Hiratsuka, Selective fluorescent labeling of the 50-, 26-, and 20-kilodalton heavy chain segments of myosin ATPase, J Biochem (Tokyo) 101 (1987) 1457-1462.
    [30] J. Futami, M. Seno, M. Kosaka, H. Tada, S. Seno, and H. Yamada, Recombinant human pancreatic ribonuclease produced in E. coli: importance of the amino-terminal sequence, Biochem Biophys Res Commun 216 (1995) 406-413.
    [31] E. Manser, D. Fernandez, L. Loo, P. Y. Goh, C. Monfries, C. Hall, and L. Lim, Human carboxypeptidase E. Isolation and characterization of the cDNA, sequence conservation, expression and processing in vitro, Biochem J 267 (1990) 517-525.
    [32] J. Du, B. P. Keegan, and W. G. North, Key peptide processing enzymes are expressed by breast cancer cells, Cancer Lett 165 (2001) 211-218.
    [33] W. G. North, and J. Du, Key peptide processing enzymes are expressed by a variant form of small-cell carcinoma of the lung, Peptides 19 (1998) 1743-1747.
    [34] F. J. Eng, O. Varlamov, and L. D. Fricker, Sequences within the cytoplasmic domain of gp180/carboxypeptidase D mediate localization to the trans-Golgi network, Mol Biol Cell 10 (1999) 35-46.
    [35] W. Li, M. J. Moore, N. Vasilieva, J. Sui, S. K. Wong, M. A. Berne, M. Somasundaran, J. L. Sullivan, K. Luzuriaga, T. C. Greenough, H. Choe, and M. Farzan, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature 426 (2003) 450-454.
    [36] O. Varlamov, F. Wu, D. Shields, and L. D. Fricker, Biosynthesis and packaging of carboxypeptidase D into nascent secretory vesicles in pituitary cell lines, J Biol Chem 274 (1999) 14040-14045.
    [37] O. Varlamov, F. J. Eng, E. G. Novikova, and L. D. Fricker, Localization of metallocarboxypeptidase D in AtT-20 cells. Potential role in prohormone processing, J Biol Chem 274 (1999) 14759-14767.
    [38] S. M. Rybak, and D. L. Newton, Natural and engineered cytotoxic ribonucleases: therapeutic potential, Exp Cell Res 253 (1999) 325-335.
    [39] J. S. Kim, J. Soucek, J. Matousek, and R. T. Raines, Mechanism of ribonuclease cytotoxicity, J Biol Chem 270 (1995) 31097-31102.
    [40] A. Bracale, D. Spalletti-Cernia, M. Mastronicola, F. Castaldi, R. Mannucci, L. Nitsch, and G. D'Alessio, Essential stations in the intracellular pathway of cytotoxic bovine seminal ribonuclease, Biochem J 362 (2002) 553-560.
    [41] P. A. Leland, and R. T. Raines, Cancer chemotherapy--ribonucleases to the rescue, Chem Biol 8 (2001) 405-413.
    [42] N. Olmo, J. Turnay, G. Gonzalez de Buitrago, I. Lopez de Silanes, J. G. Gavilanes, and M. A. Lizarbe, Cytotoxic mechanism of the ribotoxin alpha-sarcin. Induction of cell death via apoptosis, Eur J Biochem 268 (2001) 2113-2123.
    [43] M. C. Haigis, E. L. Kurten, R. L. Abel, and R. T. Raines, KFERQ sequence in ribonuclease A-mediated cytotoxicity, J Biol Chem 277 (2002) 11576-11581.
    [44] O. Varlamov, and L. D. Fricker, The C-terminal region of carboxypeptidase E involved in membrane binding is distinct from the region involved with intracellular routing, J Biol Chem 271 (1996) 6077-6083.
    [45] I. Arnaoutova, C. L. Jackson, O. S. Al-Awar, J. G. Donaldson, and Y. P. Loh, Recycling of Raft-associated prohormone sorting receptor carboxypeptidase E requires interaction with ARF6, Mol Biol Cell 14 (2003) 4448-4457.
    [46] T. Maeda, M. Kitazoe, H. Tada, R. de Llorens, D. S. Salomon, M. Ueda, H. Yamada, and M. Seno, Growth inhibition of mammalian cells by eosinophil cationic protein, Eur. J. Biochem. 269 (2002) 307-316.
    [47] G. Mallorqui-Fernandez, J. Pous, R. Peracaula, J. Aymami, T. Maeda, H. Tada, H. Yamada, M. Seno, R. de Llorens, F. X. Gomis-Ruth, and M. Coll, Three-dimensional crystal structure of human eosinophil cationic protein (RNase 3) at 1.75 A resolution, J. Mol. Biol. 300 (2000) 1297-1307.
    [48] C. M. Wu, H. T. Chang, and M. D. Chang, Membrane-bound carboxypeptidase E facilitates the entry eosinophil cationic protein to neuroendocrine cell, Biochem. J. Pt (2004).
    [49] T. A. Rapoport, B. Jungnickel, and U. Kutay, Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes, Annu. Rev. Biochem. 65 (1996) 271-303.
    [50] G. Blobel, and B. Dobberstein, Transfer to proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components, J. Cell Biol. 67 (1975) 852-862.
    [51] B. Martoglio, R. Graf, and B. Dobberstein, Signal peptide fragments of preprolactin and HIV-1 p-gp160 interact with calmodulin, EMBO. J. 16 (1997) 6636-6645.
    [52] J. McLauchlan, M. K. Lemberg, G. Hope, and B. Martoglio, Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets, EMBO. J. 21 (2002) 3980-3988.
    [53] M. K. Lemberg, F. A. Bland, A. Weihofen, V. M. Braud, and B. Martoglio, Intramembrane proteolysis of signal peptides: an essential step in the generation of HLA-E epitopes, J. Immunol. 167 (2001) 6441-6446.
    [54] F. Lyko, B. Martoglio, B. Jungnickel, T. A. Rapoport, and B. Dobberstein, Signal sequence processing in rough microsomes, J. Biol. Chem. 270 (1995) 19873-19878.
    [55] M. K. Lemberg, and B. Martoglio, Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis, Mol. Cell. 10 (2002) 735-744.
    [56] A. Weihofen, K. Binns, M. K. Lemberg, K. Ashman, and B. Martoglio, Identification of signal peptide peptidase, a presenilin-type aspartic protease, Science 296 (2002) 2215-2218.
    [57] S. A. Fischkoff, Graded increase in probability of eosinophilic differentiation of HL-60 promyelocytic leukemia cells induced by culture under alkaline conditions, Leuk. Res. 12 (1988) 679-686.
    [58] H. L. Tiffany, F. Li, and H. F. Rosenberg, Hyperglycosylation of eosinophil ribonucleases in a promyelocytic leukemia cell line and in differentiated peripheral blood progenitor cells, J. Leukoc. Biol. 58 (1995) 49-54.
    [59] K. B. Wicher, M. Abou-Hachem, S. Halldorsdottir, S. H. Thorbjarnadottir, G. Eggertsson, G. O. Hreggvidsson, E. Nordberg Karlsson, and O. Holst, Deletion of a cytotoxic, N-terminal putatitive signal peptide results in a significant increase in production yields in Escherichia coli and improved specific activity of Cel12A from Rhodothermus marinus, Appl. Microbiol. Biotechnol. 55 (2001) 578-584.
    [60] J. C. Fenno, K. H. Muller, and B. C. McBride, Sequence analysis, expression, and binding activity of recombinant major outer sheath protein (Msp) of Treponema denticola, J. Bacteriol. 178 (1996) 2489-2497.
    [61] S. Huppert, and R. Kopan, Regulated intramembrane proteolysis takes another twist, Dev. Cell. 1 (2001) 590-592.
    [62] A. Weihofen, and B. Martoglio, Intramembrane-cleaving proteases: controlled liberation of proteins and bioactive peptides, Trends Cell Biol 13 (2003) 71-78.
    [63] B. Martoglio, and T. E. Golde, Intramembrane-cleaving aspartic proteases and disease: presenilins, signal peptide peptidase and their homologs, Hum Mol Genet 12 Spec No 2 (2003) R201-206.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE