簡易檢索 / 詳目顯示

研究生: 林洪霄
Hung-Hsiao Lin
論文名稱: 氧化銅奈米纖維之製備及其電子場發射
Synthesis and Electron Field Emission Properties of the Copper Oxide Nanofibers
指導教授: 施漢章
Han-Chang Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 81
中文關鍵詞: 模板技術聚碳酸酯膜自催化機制氣固反應高規則排列性的氧化銅奈米纖維能隙電子場發射效應功函數
外文關鍵詞: template technology, polycarbonate (PC) membrane, self-catalytic mechanism, gas-solid reaction, well-ordered CuO nanofibers, band gap (energy), electron field emission effect, work function
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文之實驗方向在以運用電化學沈積法(electrodeposition),結合聚碳酸酯膜版(polycarbonate membranes ; PC template)技術,以硫酸銅溶液作為銅離子提供源,採取直流電鍍方式於銅極板上沈積具有奈米結構的銅晶核(顆粒直徑 : 50 nm & 100 nm) ; 續藉其氧化銅之自催化機制(self-catalytic mechanism),在高純度的氧氣氛下,經氣固反應(gas-solid reaction)以合成高規則順向排列性的氧化銅奈米纖維(CuO nanofibers film)。
    氧化銅奈米纖維經X光繞射儀(XRD)、X光光電子譜儀(XPS)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)等儀器分析得知 : 其成分符合銅氧比例(Cu : O = 1 : 1),線徑分別介於50-100nm,纖維密度介於107-108/cm2 ; 實驗所得氧化銅奈米纖維形顯示其生成形貌與聚碳酸酯膜版的孔徑大小與孔洞密度存有絕對相依性。再藉由光電子激發光譜(photoluminescence spectrum ; PL spectrum)分析其半導体特性,發現氧化銅奈米纖維之能隙值(band-gap energy)為 ~1.67eV(略小於銅塊材之1.85eV) ; 並可觀察在較高製程溫度下,隨著纖維徑長縮小(由100nm縮至50nm),會導致PL頻譜產生紅位移的趨勢。

    將此具高度順向排列性的氧化銅奈米纖維應用於電子場發射(electron field emission)測試上。經實驗結果證實,此奈米結構材料具有場發射效應,開啟電壓(場)(turn-on voltage ; turn-on field)值約為6-7V/µm ; 續對其F-N曲線計算得氧化銅奈米纖維之功函數值約在3.1-4.3eV間(略小於銅塊材之5.3eV)。經過多次循環測試後,氧化銅奈米纖維材料仍能維持一定的場發射電流密度值,且材料排列結構符合場發射平面顯示器應具備之高亮點密度(107-108亮點數/cm2,遠高於FED文獻提出之105亮點數/cm2 ),具有作為場發射源材料的高度潛力。


    One-dimensional well-ordered CuO nanofibers have been synthesized by electrodposition followed by the self-catalytic growth. Firstly, the nuclei sites of copper were distributed uniformly on copper substrate, using polycarbonate (PC) template and high operation-voltage input (electric field is 15 V/cm) in a copper sulphate solution. According to pore diameter of PC membrane, two different sizes of copper nuclei could be well controlled at 50-60 and 100-150 nm.
    With after-treatment in oxidation reaction, the electrodeposited copper nuclei have been transformed into the nanofibers of the copper oxide. The characteristics of nanofibers were examined by X-ray diffraction (XRD), X-ray photoelectron spectrometer (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Results showed that the highly ordered CuO nanofibers had a mean length of 6-8 μm, and their average diameters were accorded with pore size of PC membrane. The band gap of the CuO nanofibers was calculated to be 1.67 eV from the photoluminescence (PL) absorption spectrum, which is apparently smaller than the reported value for the bulk CuO (Eg = 1.85 eV)

    Typical turn-on voltage for the CuO nanofiber arrays was detected at about 6-7 V/μm with an emission area of 1 mm2. The Fowler-Nordheim model was employed to analyze the I-V data obtained. The work function of the nanofibers was estimated in range of 3.1-4.3 eV. Based on the above analyses, the highly-ordered CuO nanofiber array can be a promising candidate as field emission emitters.

    摘要 ------------------------------------------------------------------------------ I Abstract -------------------------------------------------------------------------- II 關鍵字索引 (Index of Key Word) -------------------------------------------III 謝誌 -----------------------------------------------------------------------------IV Content ---------------------------------------------------------------------------V List of Figures ----------------------------------------------------------------VIII List of Tables -------------------------------------------------------------------IX I. Introduction ------------------------------------------------------------------ 1 I-1 Investigation of Nanotechnology -------------------------------------- 1 I-2 Motivation ---------------------------------------------------------------- 2 II. Theoretical Aspects -------------------------------------------------------- 4 II-1 Theory of Electrochemical Deposition -------------------------------4 II-1-1 An Overview ---------------------------------------------------- 4 II-1-2 Theoretical Aspects of Electrochemical Deposition ------- 5 II-1-3 Investigation of Electrochemical Deposition Techniques for Nanostructured Materials ------------------- 8 II-2 Theory of Gas-Solid Reaction -----------------------------------------9 II-2-1 Introduction of Gas-Solid Reaction -------------------------- 9 II-2-2 Theoretical Aspects of Gas-Solid Reactions ---------------11 II-3 Theory of Electron Field Emission ----------------------------------13 II-3-1 The Investigation of Electron Field Emission -------------13 II-3-2 The Electron Field Emission Theory of Metals -----------13 II-3-3 The Electron Field Emission Theory of Semiconductors ------------------------------------------- 17 II-3-4 Field-Emission Equation ------------------------------------ 23 II-4 Theory of Photoluminescence & Band Structure of Semiconductors ------------------------------------------------ 25 II-4-1 The Investigation of Photoluminescence ------------------25 II-4-2 Photoluminescence Theory of Semiconductors ---------- 26 III. Experimental and Characterization -------------------------------- 33 III-1 Materials & Experimental Parameters ---------------------------- 33 III-2 Investigation of Experimental Procedure -------------------------36 III-3 Instruments of Experimental Analysis ---------------------------- 37 IV. Results and Discussion ------------------------------------------------- 39 IV-1 Analysis of SEM Images of CuO Nanostructures --------------- 39 IV-1-1 Investigation of SEM Representations ------------------- 39 IV-1-2 Advanced Discussion on SEM Analysis ----------------- 41 IV-2 Analysis of XRD Pattern of CuO Nanofibers --------------48 IV-3 Analysis of XPS Spectrum of CuO Nanofibers ----------------- 50 IV-4 Analysis of TEM Images of CuO Nanofibers-------------------- 52 IV-5 Discussion in Growth Mechanism of CuO Nanofibers -------- 55 IV-5-1 Investigation of Experimental Mechanism -------------- 55 IV-5-2 Investigation of Gas-Solid Mechanism ------------------ 56 IV-6 Analysis of PL Test of CuO Nanofibers -------------------------- 59 IV-6-1 Investigation of PL Representations ----------------------59 IV-6-2 Advanced Discussion on PL Analysis --------------------60 IV-7 Analysis of Electron Field Emission Test of CuO Nanofibers ---------------------------------------------------63 IV-6-1 Investigation of Field Emission Representations ------- 63 IV-6-2 Investigation of Fowler-Nordheim Plot ------------------ 64 V. Conclusion ----------------------------------------------------------------- 69 V-1 Conclusion in Synthesis of CuO Nanofibers ----------------69 V-2 Advanced Discussion on PL Analysis ------------------------69 Appendix ----------------------------------------------------------------------- 73 Reference ----------------------------------------------------------------------- 75

    1 H. Gleiter, Adv. Mater. 4, “Nanostructured Materials”,474 (1992)
    2 R. Birringer, and H. Gleiter, “Encyclopedia of Materials Science and
    Engineering”, Suppl. Vol. 1, Pergamon Press, Oxford, U. K., (1988)
    3 T. Thurn-Albrecht, J. Schotter, G. A. Kästle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuomien, T. P. Russell, “Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates”, Science 290, 2126 (2000)
    4 A. J. Yin, J. Li, W. Jian, A. J. Bennett, J. M. Xu, “Fabrication of Highly Ordered Metallic Nanowire Arrays by Electrodeposition”, Appl. Phy. Lett. 79, 1039 (2001)
    5 Q. Zhang, Y. Li, D. Xu, Z. Gu, “Preparation of Silver Nanowire Arrays in Anodic Aluminum OxideTemplates”, J. Mater. Sci. Lett. 20, 925 (2001)
    6 N. Li, and C. R. Martin, “A High-Rate, High-Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis”, J. Electrochem. Soc. 148, A164 (2001)
    7 Y. C. Wang, I. C. Leu, and M. H. Hon, “ZnO Nanowire Array Synthesized by Electrophoresis Method ”, Electrochem. & Solid-State Lett. 5, C53 (2002)
    8 F. Schlottig, M. Textor, U. Georgi, and G. Roewer, “Template Synthesis of SiO2 Nanostructures”, J. Mater. Sci. Lett. 18, 599 (1999)
    9 Y. Cui, Q. Wei, H. Park, C. M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species”, Science 293, 1289 (2001)
    10 J. M. Bonard, H. Kind, T. Stöckli, and L. O. Nilsson, “Field Emission
    from Carbon Nanotube: the First Five Years”, Solid-State
    Electronics 45, 893 (2001)
    11 Y. Chen, S. Patel, Y. Ye, D. T. Shaw, and L. Guo, “Field Emission from
    Aligned High-Density Graphitic Nanofibers”, Appl. Phy. Lett. 73,
    2119 (1998)
    12 A. Wadhawan, R. E. Stallcup II, and J. M. Perez, “Effects of Cs
    Deposition on the Field-Emission Properties of Single-Walled
    Carbon-Nanotube Bundles”, Appl. Phy. Lett. 78, 108 (2001)
    13 L. H. Chan, K. H. Hong, D. Q. Xiao, W. J. Hsieh, S. H. Lai, and H. C. Shih, “Role of Extrinsic Atoms on the Morphology and Field Emission Properties of Carbon Nanotubes”, Appl. Phy. Lett. 82, in press
    14 J. M. Bonard, T. Stöckli, F. Maier, W. A. de Heer, A. Chatelain, J. P.
    Salnetat, and L. Forro, “Field-Emission-Induced Luminescence from
    Carbon Nanotubes”, Phys. Rev. Lett. 81, 1441 (1998)
    15 X. Ma, E. Wang, W. Zhou, D. A. Jefferson, J. Chen, S. Deng, N. Xu,
    and J. Yuan, “Polymerized Carbon Nanobells and Their Field-Emission
    Properties”, Appl. Phy. Lett. 75, 3105 (1999)
    16 W. Wang, Y. Zhan, X. Wang, Y. Liu, C. Zheng, and G. Wang, “Synthesis
    and Characterization of CuO Nanowhiskers by a Novel One-Step
    Reaction in the Presence of a Nonionic Surfactant ”, Mater. Res.
    Bulletin 37, 1093 (2002)
    17 Z. S. Hong, Y. Cao, and J. F. Deng, “A Convenient Alcohothermal
    Approach for Low Temperature Synthesis of CuO Nanoparticles”,
    Mater. Lett. 52, 34 (2002)
    18 A. Galembeck, and O. L. Alves, “Planar Hheterostructures
    Oxide/Conducting Polymer (CuO/Polypyrrole and CeO2/Polypyrrole)”,
    Synth. Met. 102, 1238 (1999)
    19 I. Lisiecki, and M. P. Pileni, “Synthesis of Copper Metallic Clusters
    Using Reverse Micelles as Micrreactors”, J. Am. Chem. Soc. 115,
    3887 (1993)
    20 W. Wang, Z. Liu, Y. Liu, C. Xu, C. Zheng, and G. Wang, “A Simple
    Wet-Chemical Synthesis and Characterization of CuO Nanorods”,
    Appl. Phys. A76, 417 (2003)
    21 C. T. Hsieh, J. M. Chen, H. H. Lin, and H. C. Shih, “Synthesis of
    Well-Ordered CuO Nanofibers by a Self-Catalytic Growth
    Mechanism”, Appl. Phys. Lett. 82, 3316 (2003)
    22 M. Paunovic, and M. Schlesinger, “Fundamentals of Electrochemical Deposition”, John Wiley & Sons, New York, (1998)
    23 J. W. Dini, “Electrodeposition/ the Materials Science of Coatings and Substrates”, Noyes Publications, (1993)
    24 R.K. Pandey, S.N. Sahu, S.Chandra, “Handbook of semiconductor electrodeposition”, Marcel Dekker, New York, (1996)
    25 G. M. Chow, and N. I. Noskova, “Nanostructured Materials Science & Technology”, Academic Publishers, Boston, (1998)
    26 R. M. Schaffer, and B. W. Gonser, “A Sulphate-Chloride Solution for Iron Electroplating and Electroforming”, Trans. Electrochem. Soc. 84, 319 (1943)
    27 M. L. Trudeau, unpublished.
    28 F. Gonzalez, A. M. Brennenstuhl, G. Palumbo, U. Erb, and P. C. Lichtenberger, “Electrodeposited Nanostructured Nickel for In-Situ Nuclear Steam Generator Repair ”, Mater. Sci. For. 225, 831 (1996)
    29 J. Szekely, J. W. Evans, Y. S. Hong, “Gas-Solid Reactions”, Academic Press, New York, (1976)
    30 R. Gomer, “Field Emission and Field Ionization”, Harvard University
    Press, Cambridge, (1993)
    31 V. Rojansky, “Introductory Quantum Mechanics”, Prentice Hall, New
    York, (1938)
    32 W. P. Dyke, W. W. Dolan, and L. Marton, “Advance in Electronics and
    Electron Physics” 8, 89, Academic Press, New York, (1956)
    33 R. H. Good, E. W. Müller, “Handbuch der Physik”, 21, (1956)
    34 S. Perkowitz, “Optical Characterization of Semiconductors: Infrared,
    Raman, and Photoluminescence Spectroscopy”, Academic Press,
    London, (1993)
    35 K. D. Mielenz, “Measurement of photoluminescence”, Academic Press,
    London, (1982)
    36 http://userpages.umbc.edu/~rczebo1/research/ch3.pdf
    37 C. R. Martin, “Nanomaterials: A Membrane-Based Synthetic
    Approach”, Science 266, 1961 (1994)
    38 L. E. Murr, Interfacial Phenomena in Metals and Alloys, Addison Wesley Publishing Company, London, 1975
    39 X. J. Guo, S. L. Sung, J. C. Lin, F. R. Chen, and H. C. Shih, Diamond Relat. Mater. 9, 1840 (2000)
    40 Y. K. Hong, H. Kim, G. Lee, W. Kim, J. I. Park, J. Cheon, and J. Y.
    Koo, “Controlled Two-Dimensional Distribution of Nanoparticles by Spin-Coating Method”, Appl. Phy. Lett. 80, 844 (2002)
    41 Y. C. Choi, Y. M. Shin, S. C. Lim, D. J. Bae, Y. H. Lee, B. S. Lee, D. C. Chung, “Effect of Surface Morphology of Ni Thin Film on the Growth of Aligned Carbon Nanotubes by Microwave Plasma-Enhanced Chemical Vapor Deposition”, J. Appl. Phy. 88, 4898 (2000)
    42 Z. L. Wang, Y. Liu, and Z. Zhang, “Handbook of Nanophaseand and Nanostructured Materials ”, Kluwer Academic, New York, (2003)
    43 R. W. G. Wyckoff, “Crystal Structures”, Interscience Publishers, INC.,
    New York, (1960)
    44 Y. J. Yoon, and H. K. Baik, “Catalytic Growth Mechanism of Carbon Nanofibers through Chemical Vapor Deposition”, Diamond Relat. Mater. 10, 1214 (2001)
    45 J. F. Xu, W. Ji, Z. X. Shen, and S. H. Tang, “Preparation and Characterization of CuO Nanocrystals”, J. Solid State Chemistry 147, 516 (1999)
    46 A. E. Rakhshani, “Preparation, Characteristics and Photovolatic Properties of Cuprous Oxide- A Revie ”, Solid-State Electronics 29, 7 (1986)
    47 Y. M. Shyu, and F. C. N. Hong, “The Effects of Pre-Treatment and
    Catalyst Composition on Growth of Carbon Nanofibers at Low
    Temperature”, Diamond Relat. Mater. 10, 1241 (2001)
    48 J. M. Ting, and N. Z. Huang, “Thickening of Chemical Vapor Deposited Carbon Fiber”, Carbon 39, 835 (2001)
    49 M. Ritschel, M. Uhlemann, O. Gutfleisch, A. Leonhardt, A. Graff, C.
    Täschner, and J. Fink, “Hydrogen Storage in Different Carbon
    Nanostructures”, Appl. Phy. Lett. 80, 2985 (2002)
    50 R. Ma, B. Wei, C. Xu, J. Liang, and D. Wu, “Catalytic Growth of
    Carbon Nanofibers on a Porous Carbon Nanotubes Substrate”, J.
    Mater. Sci. Lett. 19, 1929 (2000)
    51 V. I. Merkulov, A. V. Melechko, M. A. Guillorn, M. L. Simpson, D. H. Lowndes, J. H. Whealton, R. J. Raridon, “Controlled Alignment of Carbon Nanofibers in a Large-Scale Synthesis Process”, Appl. Phy. Lett. 80, 4816 (2002)
    52 N. Jiang, R. Koie, T. Inaoka, Y. Shintani, K. Nishimura, A. Hiraki, “Carbon Nanofibers Synthesized by Decomposition of Alcohol at Atmospheric Pressure”, Appl. Phy. Lett. 81, 526 (2002)
    53 Y. Jiang, S. Decker, C. Mohs, and K. J. Klbunde, “Catalytic Solid
    State Reactions on the Surface of Nanoscale Metal Oxide Particles ”, J.
    Catalysis 180, 24 (1998)
    54 R. A. Swalin, “Thermodynamics of Solids”, John Wiley & Sons, New
    York,(1972)
    55 J. L. Ericksen, “Introduction to the Thermodynamics of Solids”,
    Chapman & Hall, London, (1991)
    56 P. Schmuki, D. J. Lockwood, H. J. Labbe´ , and J. W. Fraser, “Visible photoluminescence from porous GaAs”, J. Appl. Phy. 69, 1620 (1996)
    57 S. W. Feng, Y. C. Cheng, Y. Y. Chung, and C. C. Yang, “Strong Green Luminescence in Quaternary InAlGaN Thin Films”, J. Appl. Phy. 82, 1377 (2003)
    58 W. I. Park, Y. H. Jun, S. W. Jung, and G. C. Yi, “Excitonic Emissions Observed in ZnO Single Crystal Nanorods”, J. Appl. Phy. 82, 964 (2003)
    59 W. Q. Ma, C. L. Workman, C. E. George, G. J. Salamo, D. J. Friedman, M. O. Manasreh, “Photoluminescence of Metalorganic-Chemical-
    Vapor-Deposition-Grown GaInNAs’GaAs Single Quantum Wells”,
    J. Appl. Phy. 82, 514 (2003)
    60 Y. Xu, and Q Wang, “Nanovoid-Related Large Redshift of Photoluminescence Peak Energy in Hydrogenated Amorphous Silicon”
    Appl. Phy. Lett. 78, 58 (2001)
    61 S. Guha, R. C. Keller, and V. Yang, “Comparative Optical Studies of p-Ttype and Unintentionally Doped GaN: TheIinfluence of Annealing”
    Appl. Phy. Lett. 80, 40 (2002)
    62 E. Oh, H. Park, and Y. Park, “Excitation Density Dependence of Photoluminescence in GaN:Mg”, Appl. Phy. Lett. 72, 70 (1998)
    63 X. Liu, S. G. Bishop, J. N. Baillargeon, and K. Y. Cheng, “Band Gap Bowing in GaP1-xNx Alloys”, Appl. Phy. Lett. 63, 208 (1993)
    64 M. S. Dresselhaus, G. Dresselhaus, and P .C. Eklund, Science of fullerence and Carbon Nanotubes, Academic, San Diego, C. A., 1996
    65 T. Yasuhira, K. Komori, R. Akimoto, X. L. Wang, M. Watanabe, and M. Ogura, Appl. Phy. Lett. 81, 3642 (2002)
    66 H. M. Cheong, P. Wickboldt, D. Pang, J. H. Chen, and W. Paul, Physical Review B 52, 577 (1995)
    67 X. W. Liu, C. H. Tseng, J. H. Lin, L. T. Chao, and H. C. Shin, Surface and Coatings Technology 135, 184 (2001)
    68 K. Santra, C.K. Sarkar, M.K. Mukherjee, B. Cosh, Thin Solid Films 213, 226 (1992)
    69 www.york.ac.uk/depts/chem/course/ studhand/brav2a.gif
    70 http: //www.webelements.com/webelements/compounds/media/Cu/C
    u1O1-1317380.jpg
    71 http://www.me.washington.edu/faculty/McCormick/spectrum.jpg

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE