簡易檢索 / 詳目顯示

研究生: 吳建頤
Wu, Chien-Yi
論文名稱: 砷化鎵奈米線/PEDOT:PSS混合型太陽能電池研製
The study of hybrid solar cells based on GaAs nanowire arrays and PEDOT:PSS
指導教授: 黃金花
Huang, Jin-Hua
口試委員: 黃倉秀
黃柏瑋
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 86
中文關鍵詞: 砷化鎵奈米線混合型太陽能電池
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於砷化鎵基板仍十分昂貴,且太陽能電池需要同時兼顧效率與成本,近年來,核殼結構砷化鎵奈米線不再成長於砷化鎵基板上,而是以鎵自催化方式成長於矽基板上。為了做成太陽能電池元件,核殼結構砷化鎵奈米線必須在基板與上電極間製作一層絕緣層以防止短路,然而砷化鎵奈米線在此方面的製程上仍然找不到一個合宜的解決方式。
    PEDOT:PSS是目前最有潛力的有機半導體材料之一,且與砷化鎵及矽皆能形成合適的P-N接面,不須顧慮到短路的問題。本研究即以導電高分子PEDOT:PSS作為P型半導體材料,取代核殼結構太陽能電池中的殼層。我們分別在砷化鎵奈米線與氧化銦錫導電玻璃上旋轉塗佈一層PEDOT:PSS薄膜,再將奈米線與導電玻璃結合,形成砷化鎵/PEDOT:PSS混合型太陽能電池元件,並分別對不同直徑、長度的奈米線及PEDOT:PSS旋轉塗佈速度進行轉換效率的探討。本研究中得到的最高效率為4.58 x 10-3%。


    Since the cost of gallium arsenide(GaAs) substrate is expensive, core-shell GaAs nanowires(NWs), which used to be grown on GaAs substrate, had turned to be grown on silicon(Si) substrate via the self-catalyzed mechanism in recent years. In order to make a solar cell device, core-shell GaAs NWs must produce one insulator layer between top electrode and substrate to prevent short-circuiting. However, we still cannot find a decent solution for it.
    Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) is currently one of the most promising conducting polymers, which has great formation of p-n junction with both GaAs and Si. This could solve the short-circuiting problem between top electrode and silicon substrate.
    In this study, we use PEDOT:PSS as a P-type semiconductor material to replace the shell layer in core-shell structure. PEDOT:PSS thin film were spin coated on GaAs NWs and indium tin oxide conductive glass. Afterwards, the nanowire set were pressed onto the conductive glass to fabricate the GaAs/PEDOT:PSS hybrid solar cell device. We discussed the effect of the nanowire length, diameter and spin coating speed on the optical properties of nanowire devices. The best power conversion efficiency in our work is 4.58 x 10-3%.

    第一章 緒論 1 1-1 前言 1 1-2 研究動機及目的 3 1-3 論文結構 4 第二章 文獻回顧 5 2-1 奈米材料科技 5 2-1-1 零維奈米結構 6 2-1-2 一維奈米結構 7 2-1-3 二維奈米結構 8 2-2 太陽能電池 9 2-2-1 工作原理 9 2-2-2 能量轉換效率與電壓電流特性 10 2-2-3 等效電路模型 13 2-3 有機太陽能電池 16 2-3-1 有機太陽能電池發電機制 16 2-3-2 有機太陽能電池元件結構 18 2-4 砷化鎵奈米線太陽能電池 21 2-4-1 砷化鎵 22 2-4-2 奈米線製程 27 2-4-3 VLS成長機制 29 2-5 混合型太陽能電池 33 2-5-1 混合型太陽能電池的優勢及發電機制 33 2-5-2 PEDOT:PSS 36 2-5-3 矽奈米線與PEDOT:PSS 37 2-5-4 砷化鎵奈米線與PEDOT:PSS 40 第三章 儀器介紹與實驗步驟 42 3-1 分子束磊晶 ( Molecular Beam Epitaxy, MBE)簡介 42 3-1-1 分子束磊晶系統 42 3-1-2 磊晶原理 45 3-2 旋轉塗佈機(Spin Coater) 48 3-3 電阻式真空蒸鍍系統 ( Thermal coater ) 48 3-4 實驗步驟 50 3-4-1 實驗流程圖 50 3-4-2 試片清洗 51 3-4-3 背電極製作 52 3-4-4 試片的承載與載入 52 3-4-5 奈米線成長 53 3-4-6 後段製程流程圖 54 3-5 分析儀器 55 3-5-1 掃描式電子顯微鏡(SEM) 55 3-5-2 太陽模擬光量測系統(Solar simulator) 57 第四章 結果與討論 58 4-1 自催化核殼結構奈米線之研究探討 58 4-1-1 不同核層成長時間對奈米線的影響 61 4-1-2 不同殼層成長時間對奈米線的影響 63 4-2 自催化核殼結構奈米線太陽能電池元件製程 65 4-2-1 PEDOT:PSS旋塗 65 4-2-2 元件製作 68 4-3 自催化核殼結構奈米線太陽能電池效率之研究探討 70 4-3-1 奈米線長度對效率的影響 70 4-3-2 奈米線直徑(殼層)對效率的影響 73 4-3-3 不同旋塗速率對效率的影響 77 第五章 結論 79 第六章 參考文獻 81

    [1] 胡淑芬, "奈米科技發展之介紹," 毫微米通訊, vol. 8, pp. 1-10, 2001.
    [2] S. Iijima, "HELICAL MICROTUBULES OF GRAPHITIC CARBON," Nature, vol. 354, pp. 56-58, Nov 1991.
    [3] 楊. 蔡銘維, "一維奈米技術," 科學發展, pp. 62-71, 2012.
    [4] 馬遠榮, "低維奈米技術," 科學發展, pp. 72-75, 2004.
    [5] O. Lupan, T. Pauporté, B. Viana, and P. Aschehoug, "Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode applications," Electrochimica Acta, vol. 56, pp. 10543-10549, 2011.
    [6] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, et al., "Room-temperature ultraviolet nanowire nanolasers," Science, vol. 292, pp. 1897-1899, Jun 2001.
    [7] X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, "Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature, vol. 409, pp. 66-69, Jan 2001.
    [8] J. T. Hu, T. W. Odom, and C. M. Lieber, "Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes," Accounts of Chemical Research, vol. 32, pp. 435-445, May 1999.
    [9] A. Casadei, P. Krogstrup, M. Heiss, J. A. Röhr, C. Colombo, T. Ruelle, et al., "Doping incorporation paths in catalyst-free Be-doped GaAs nanowires," Applied Physics Letters, vol. 102, p. 013117, 2013.
    [10] E. Dimakis, M. Ramsteiner, A. Tahraoui, H. Riechert, and L. Geelhaar, "Shell-doping of GaAs nanowires with Si for n-type conductivity," Nano Research, vol. 5, pp. 796-804, 2012.
    [11] B. M. Kayes, H. A. Atwater, and N. S. Lewis, "Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells," Journal of Applied Physics, vol. 97, p. 114302, 2005.
    [12] M. D. Kelzenberg. Radial Junction Solar Cells. Available: http://www.its.caltech.edu/~spurgeon/Radial%20Junction.html
    [13] M. B. Mohamed, C. Burda, and M. A. El-Sayed, "Shape dependent ultrafast relaxation dynamics of CdSe nanocrystals: Nanorods vs nanodots," Nano Letters, vol. 1, pp. 589-593, Nov 2001.
    [14] C. F. Landes, S. Link, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, "Some properties of spherical and rod-shaped semiconductor and metal nanocrystals," Pure and Applied Chemistry, vol. 74, pp. 1675-1692, Sep 2002.
    [15] L. Mino, G. Agostini, E. Borfecchia, D. Gianolio, A. Piovano, E. Gallo, et al., "Low-dimensional systems investigated by x-ray absorption spectroscopy: a selection of 2D, 1D and 0D cases," Journal of Physics D: Applied Physics, vol. 46, p. 423001, 2013.
    [16] E. F. Schubert, Quantum mechanics and structures, 2003.
    [17] Z. L. Wang, R. Yang, J. Zhou, Y. Qin, C. Xu, Y. Hu, et al., "Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics," Materials Science and Engineering: R: Reports, vol. 70, pp. 320-329, 2010.
    [18] 蔡進譯, "超高效率太陽能電池-從愛因斯坦的光電效應談起," 物理雙月刊, pp. 701-719, 2005.
    [19] Available: http://pveducation.org/pvcdrom/appendices/standard-solar-spectra
    [20] N. R. P. P.S.Priambodo, D. Hartanto,, Solar Cell Technology. INTECH Open Access Publisher.
    [21] Photovoltaic Cell I-V Characterization Theory and LabVIEW Analysis Code. Available: http://www.ni.com/white-paper/7230/en/
    [22] N. Kaur, M. Singh, D. Pathak, T. Wagner, and J. M. Nunzi, "Organic materials for photovoltaic applications: Review and mechanism," Synthetic Metals, vol. 190, pp. 20-26, 2014.
    [23] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, "Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C-60 heterojunction photovoltaic cell," Applied Physics Letters, vol. 68, pp. 3120-3122, May 1996.
    [24] J. J. M. Halls and R. H. Friend, "The photovoltaic effect in a poly(p-phenylenevinylene)/perylene heterojunction," Synthetic Metals, vol. 85, pp. 1307-1308, Feb 1997.
    [25] F. Nuesch, F. Rotzinger, L. Si-Ahmed, and L. Zuppiroli, "Chemical potential shifts at organic device electrodes induced by grafted monolayers," Chemical Physics Letters, vol. 288, pp. 861-867, May 1998.
    [26] M. Kemerink, J. M. Kramer, H. H. P. Gommans, and R. A. J. Janssen, "Temperature-dependent built-in potential in organic semiconductor devices," Applied Physics Letters, vol. 88, p. 3, May 2006.
    [27] H. Kallmann and M. Pope, "PHOTOVOLTAIC EFFECT IN ORGANIC CRYSTALS," Journal of Chemical Physics, vol. 30, pp. 585-586, 1959.
    [28] Y. Hu, R. R. LaPierre, M. Li, K. Chen, and J. J. He, "Optical characteristics of GaAs nanowire solar cells," Journal of Applied Physics, vol. 112, p. 104311, 2012.
    [29] K. Sun, A. Kargar, N. Park, K. N. Madsen, P. W. Naughton, T. Bright, et al., "Compound Semiconductor Nanowire Solar Cells," Ieee Journal of Selected Topics in Quantum Electronics, vol. 17, pp. 1033-1049, Jul-Aug 2011.
    [30] GaAs Zinc blende structure. Available: http://www.chem.shef.ac.uk/chm131-2001/cha01tal/compoundsemiconductors.html
    [31] Silicon diamond structure. Available: http://www.chem.shef.ac.uk/chm131-2001/cha01tal/elementalsemiconductors.html
    [32] GaAs band structure. Available: http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/bandstr.html
    [33] Silicon band structure. Available: http://www.ioffe.ru/SVA/NSM/Semicond/Si/bandstr.html
    [34] Drift velocity versus electric field in Silicon and GaAs. Available: http://www.globalsino.com/micro/1/1micro9939.html
    [35] "Chapter 12: Visible-spectrum LEDs."
    [36] GaAs basic parameters at 300K. Available: http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/basic.html
    [37] Q. Yan, F. Liu, L. Wang, J. Y. Lee, and X. S. Zhao, "Drilling nanoholes in colloidal spheres by selective etching," Journal of Materials Chemistry, vol. 16, p. 2132, 2006.
    [38] K. Chen, J.-J. He, M.-Y. Li, and R. Lapierre, "Fabrication of GaAs Nanowires by Colloidal Lithography and Dry Etching," Chinese Physics Letters, vol. 29, p. 036105, 2012.
    [39] R. R. LaPierre, A. C. E. Chia, S. J. Gibson, C. M. Haapamaki, J. Boulanger, R. Yee, et al., "III-V nanowire photovoltaics: Review of design for high efficiency," physica status solidi (RRL) - Rapid Research Letters, vol. 7, pp. 815-830, 2013.
    [40] R. S. Wagner and W. C. Ellis, "VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH ( NEW METHOD GROWTH CATALYSIS FROM IMPURITY WHISKER EPITAXIAL + LARGE CRYSTALS SI E )," Applied Physics Letters, vol. 4, pp. 89-&, 1964.
    [41] Y. Y. Wu and P. D. Yang, "Direct observation of vapor-liquid-solid nanowire growth," Journal of the American Chemical Society, vol. 123, pp. 3165-3166, Apr 2001.
    [42] D. Spirkoska, C. Colombo, M. Heiss, G. Abstreiter, and A. Fontcuberta i Morral, "The use of molecular beam epitaxy for the synthesis of high purity III–V nanowires," Journal of Physics: Condensed Matter, vol. 20, p. 454225, 2008.
    [43] GaAs phase diagram. Available: http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_9/backbone/r9_2_1.html
    [44] V. J. Babu, S. Vempati, S. Sundarrajan, M. Sireesha, and S. Ramakrishna, "Effective nanostructred morphologies for efficient hybrid solar cells," Solar Energy, vol. 106, pp. 1-22, 2014.
    [45] 奈米科學網. Available: https://nano.nchc.org.tw/index.php?apps=news&mod=welcome&action=show&gid=149
    [46] R. Zhou, Y. Zheng, L. Qian, Y. Yang, P. H. Holloway, and J. Xue, "Solution-processed, nanostructured hybrid solar cells with broad spectral sensitivity and stability," Nanoscale, vol. 4, pp. 3507-14, Jun 7 2012.
    [47] W. J. E. Beek, M. M. Wienk, M. Kemerink, X. N. Yang, and R. A. J. Janssen, "Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells," Journal of Physical Chemistry B, vol. 109, pp. 9505-9516, May 2005.
    [48] L. N. He, C. Y. Jiang, Rusli, D. Lai, and H. Wang, "Highly efficient Si-nanorods/organic hybrid core-sheath heterojunction solar cells," Applied Physics Letters, vol. 99, p. 3, Jul 2011.
    [49] D. Celik, M. Krueger, C. Veit, H. F. Schleiermacher, B. Zimmermann, S. Allard, et al., "Performance enhancement of CdSe nanorod-polymer based hybrid solar cells utilizing a novel combination of post-synthetic nanoparticle surface treatments," Solar Energy Materials and Solar Cells, vol. 98, pp. 433-440, Mar 2012.
    [50] H.-J. Syu, S.-C. Shiu, and C.-F. Lin, "Silicon nanowire/organic hybrid solar cell with efficiency of 8.40%," Solar Energy Materials and Solar Cells, vol. 98, pp. 267-272, 2012.
    [51] S. C. Shiu, J. J. Chao, S. C. Hung, C. L. Yeh, and C. F. Lin, "Morphology Dependence of Silicon Nanowire/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Heterojunction Solar Cells," Chemistry of Materials, vol. 22, pp. 3108-3113, May 2010.
    [52] E. Z. Shi, L. H. Zhang, Z. Li, P. X. Li, Y. Y. Shang, Y. Jia, et al., "TiO2-Coated Carbon Nanotube-Silicon Solar Cells with Efficiency of 15%," Scientific Reports, vol. 2, p. 5, Nov 2012.
    [53] Y. Jia, A. Y. Cao, X. Bai, Z. Li, L. H. Zhang, N. Guo, et al., "Achieving High Efficiency Silicon-Carbon Nanotube Heterojunction Solar Cells by Acid Doping," Nano Letters, vol. 11, pp. 1901-1905, May 2011.
    [54] Q. D. Tai, X. Z. Zhao, and F. Yan, "Hybrid solar cells based on poly(3-hexylthiophene) and electrospun TiO2 nanofibers with effective interface modification," Journal of Materials Chemistry, vol. 20, pp. 7366-7371, 2010.
    [55] S. J. Wu, Q. D. Tai, and F. Yan, "Hybrid Photovoltaic Devices Based on Poly (3-hexylthiophene) and Ordered Electrospun ZnO Nanofibers," Journal of Physical Chemistry C, vol. 114, pp. 6197-6200, Apr 2010.
    [56] S. Q. Ren, L. Y. Chang, S. K. Lim, J. Zhao, M. Smith, N. Zhao, et al., "Inorganic-Organic Hybrid Solar Cell: Bridging Quantum Dots to Conjugated Polymer Nanowires," Nano Letters, vol. 11, pp. 3998-4002, Sep 2011.
    [57] W. F. Fu, Y. Shi, W. M. Qiu, L. Wang, Y. X. Nan, M. M. Shi, et al., "High efficiency hybrid solar cells using post-deposition ligand exchange by monothiols," Physical Chemistry Chemical Physics, vol. 14, pp. 12094-12098, 2012.
    [58] K. F. Jeltsch, M. Schädel, J.-B. Bonekamp, P. Niyamakom, F. Rauscher, H. W. A. Lademann, et al., "Efficiency Enhanced Hybrid Solar Cells Using a Blend of Quantum Dots and Nanorods," Advanced Functional Materials, vol. 22, pp. 397-404, 2012.
    [59] Y. F. Zhou, M. Eck, C. Men, F. Rauscher, P. Niyamakom, S. Yilmaz, et al., "Efficient polymer nanocrystal hybrid solar cells by improved nanocrystal composition," Solar Energy Materials and Solar Cells, vol. 95, pp. 3227-3232, Dec 2011.
    [60] H. Park, S. Chang, J. Jean, J. J. Cheng, P. T. Araujo, M. S. Wang, et al., "Graphene Cathode-Based ZnO Nanowire Hybrid Solar Cells," Nano Letters, vol. 13, pp. 233-239, Jan 2013.
    [61] 黃桂武, "軟性印製透明導電高分子 材料技術發展," 光連雙月刊, pp. 58-65, 2012.
    [62] Y. N. X. Alan G. MacDiarmid, Joanna M. Wiesinger, "Methods for preparing conductive polyanilines."
    [63] H. C. S. E. H. T. Materials.
    [64] S. A. Moiz, A. M. Nahhas, H. D. Um, S. W. Jee, H. K. Cho, S. W. Kim, et al., "A stamped PEDOT:PSS-silicon nanowire hybrid solar cell," Nanotechnology, vol. 23, p. 145401, Apr 13 2012.
    [65] J. J. Chao, S. C. Shiu, S. C. Hung, and C. F. Lin, "GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells," Nanotechnology, vol. 21, p. 285203, Jul 16 2010.
    [66] J. R. Arthur, "INTERACTION OF GA AND AS2 MOLECULAR BEAMS WITH GAAS SURFACES," Journal of Applied Physics, vol. 39, pp. 4032-&, 1968.
    [67] C. T. Foxon and B. A. Joyce, "INTERACTION KINETICS OF AS2 AND GA ON 100 GAAS SURFACES," Surface Science, vol. 64, pp. 293-304, 1977.
    [68] C. T. Foxon and B. A. Joyce, "INTERACTION KINETICS OF AS4 AND GA ON 100 GAAS SURFACES USING A MODULATED MOLECULAR-BEAM TECHNIQUE," Surface Science, vol. 50, pp. 434-450, 1975.
    [69] A. Y. Cho, "GAAS EPITAXY BY A MOLECULAR BEAM METHOD - OBSERVATIONS OF SURFACE STRUCTURE ON (001) FACE," Journal of Applied Physics, vol. 42, pp. 2074-&, 1971.
    [70] 黃許囿, 以分子束磊晶在矽基板上自催化成長核殼結構奈米線及其在太陽能電池上的應用, 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE