研究生: |
黃俊銘 Chun-Ming Huang |
---|---|
論文名稱: |
應用於串流視訊之階層GOP編碼結構研究 Hierarchical GOP Coding Schemes for Video Streaming Applications |
指導教授: |
王家祥
Jia-Shung Wang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 78 |
中文關鍵詞: | 視訊編碼 、二元樹 、隨選視訊 、串流視訊 |
外文關鍵詞: | Video Streaming, GOP, Binary Tree, VCR-Like Functions, Error Resilience |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在壓縮視訊資料時,我們通常會將一連串的原始視訊資料分割成一般由10到20個畫面構成的GOP (Groups-of-Pictures)結構,再對每個GOP進行intra-frame以及inter-frame壓縮,通常一個GOP中會包含一個I-Frame (Intra Frame)以及若干個P-Frame (Predicted Frame),而整個GOP架構則類似一個以I-Frame為root的skew tree。在本篇論文中,我們探討如何在視訊壓縮時,利用階層式的GOP結構來提高對串流視訊系統中各類應用的支援。首先,我們提出使用階層式二元樹GOP結構取代一般線性GOP結構來降低進入快轉模式時的頻寬消耗需求之構想。對於一個包含n個畫面的線性GOP結構而言,任意顯示其中一個畫面平均需要傳送(n+1)/2個畫面的資料,但是對於二元樹GOP結構而言只需傳送約log2(n+1)-1個畫面的資料即可,因此使用二元樹GOP結構可有效降低快轉時需要傳送的畫面數量。我們並利用人類視覺系統對於快速變化畫面中的細微改變較不敏感的特性提出可進一步降低傳送的畫面數量的proximity approximation方法。實驗結果顯示我們的方法在任何快轉倍數下無論在傳送的畫面數量及頻寬需求上都低於線性GOP結構,而在PSNR部份則沒有明顯的差距。在本論文的第二部份,我們提出使用double binary tree GOP結構來提高對error resilience支援的構想。對一個包含15個畫面的線性GOP而言,一個P-Frame的損害平均會影響6.5個P-Frame的解碼,但是如果使用double binary tree GOP結構,平均只會影響0.86個P-Frame的解碼。我們的方法非常適用於當傳輸錯誤發生時,利用pixel interpolation或是motion interpolation來補救損失畫面。實驗結果顯示,對於任何損失率而言,我們的方法在視覺效果上比線性GOP結構都要高出0.5~3.0 dB。
In this thesis, we present two hierarchical GOP (Groups-of-Pictures) coding schemes for supporting VCR-like functions and error resilience in video streaming systems. For supporting VCR-like functions, our approach is based upon reshaping the ordinary linear encoded GOP structure into a hierarchical binary tree encoded GOP structure to reduce the transmission overhead caused by frame dependencies. The resulted video streaming system can immediately provide all directions video playback with any speed-up factor. We additionally propose a proximity-based approximation playback scheme along with a modified depth first search (MDFS) algorithm that can further reduce the bandwidth requirements for performing fast playback operations without causing visual quality degradations evidently. For supporting error resilience, we reorganize the regular linear GOP structure into a hierarchical double-binary tree. The proposed scheme can effectively recover a lost frame and prevent error propagation phenomenon. For a single frame loss, we guarantee that both of its next and previous frames still can be successfully decoded, thus we have sufficient temporal and spatial information to reconstruct the damaged frame. Our new coding structure even can recover the successive lost frames. The experimental result showed that the video quality has a graceful degradation when the loss rate increases rapidly. Comparing with the conventional GOP, PSNR values can be improved from 0.5 dB to 3 dB. A set-top box architecture that supports the hierarchical GOP structured video streams playback is also described in this thesis.
[1] E. L. Abram-Profeta, and K. G. Shin, “Providing Unrestricted VCR Functions in Multicast Video-On-Demand Servers,” in Proc. of IEEE International Conference on Multimedia Computing and Systems, pp. 66-75, Jul. 1998.
[2] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “A Permutation-based Pyramid Broadcasting Scheme for Video-on-Demand Systems,” in Proc. of IEEE International Conference on Multimedia Computing and Systems, pp. 118–126, Jun. 1996.
[3] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “On Optimal Batching Policies for Video-on-Demand Storage Servers,” in Proc. of IEEE International Conference on Multimedia Computing and Systems, pp. 253-258, Jun. 1996.
[4] K. C. Almeroth and M. H. Ammar, “A Scalable, Interactive Video-On-Demand Service Using Multicast Communication,” in Proc. of International Conference on Computer Communication Networks, pp. 292-301, Sep. 1994.
[5] K. C. Almeroth and M. H. Ammar, “On the Performance of a Multicast Delivery Video-on-Demand Service with Discontinuous VCR Actions,” in Proc. of IEEE International Conference on Communications, pp. 1631-1635, Jun. 1995.
[6] K. C. Almeroth and M. H. Ammar, “The Use of Multicast Delivery to Provide a Scalable and Interactive Video-on-Demand Service,” IEEE Journal on Selected Areas in Communications, vol. 14, no. 6, pp. 1110-1122, Aug. 1996.
[7] M. E. Al-Mualla, C. N. Canagarajah, and D. R. Bull, Video Coding for Mobile Communications, Elsevier Science, 2002.
[8] J. Apostolopoulos, T. Wong, W. Tan, and S. Wee, “On Multiple Description Streaming with Content Delivery Networks,” IEEE INFOCOM 2002, pp. 1736-1745, Jun. 2002.
[9] S. Carter, and D. D. E. Long, “Improving Video-on-Demand Server Efficiency Through Stream Tapping,” in Proc. of International Conference on Computer Communications and Networks, pp. 200-207, Sep. 1997.
[10] S. W. Carter, D. D. D. Long, “Improving Video-on-Demand Server Efficiency through Stream Tapping,” in Proc. of International Conference on Computer Communications and Networks, pp. 200-207, Sep. 1997.
[11] S. W. Carter, D. D. E. Long, J. F. Paris, “An Efficient Implementation of Interactive Video-on-Demand,” in Proc. of International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, pp. 172-179, Sep. 2000.
[12] H. J. Chen, A. Krishnamurthy, T. D. C. Little, and D. Venkatesh, “A Scalable Video-on-Demand Service for the Provision of VCR-Like Functions,” in Proc. of International Conference on Multimedia Computing and Systems, pp. 65-72, May 1995.
[13] M. S. Chen and D. D. Kandlur, “Downloading and Stream Conversion: Supporting Interactive Playout of Videos in a Client Station,” in Proc. of IEEE International Conference on Multimedia Computing and Systems, pp. 73-80, May 1995.
[14] M. S. Chen and D. D. Kandlur, “Stream Conversion to Support Interactive Video Playout,” IEEE Multimedia, vol. 3, no. 2, 1996, pp.51-58
[15] M. S. Chen, D. D. Kandlur and P. S. Yu, “Support for Fully Interactive Playout in a Disk-Array-Based Video Server,” in Proc. of ACM Multimedia, pp. 391-398, Oct. 1994.
[16] M. S. Chen, D. D. Kandlur, and P. S. Yu, “Storage and Retrieval Methods to Support Fully Interactive Playout in a Disk-Array-Based Video Server,” Multimedia Systems, vol. 3, no. 3, pp. 126-135, 1995.
[17] A. Dan, D. Sitaram, and P. Shahabuddin, “Dynamic Batching Policies for an On-Demand Video Server,” Multimedia Systems, vol. 4, No. 3, pp. 112-121, Jun. 1996.
[18] A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling Policies with Grouping for Providing VCR Control Functions in a Multi-media Server,” U.S. Docket No. YO993-030, 1994.
[19] A. Dan, P. Shahabuddin, D. Sitaram, and D. Towsley, “Channel Allocation under Batching and VCR Control in Video-On-Demand Systems,” Journal of Parallel and Distributed Computing, vol. 30, no. 2, pp. 168-179, Nov. 1995.
[20] J. K. Dey-Sircar, J. D. Salehi, J. F. Kurose, and D. Towsley, “Providing VCR Capabilities in Large-Scale Video Servers,” in Proc. of ACM Multimedia, pp. 25-32, Oct. 1994.
[21] Z. Fei, I. Kamel, S. Mukherjee, and M. Ammar, “Providing Interactive Functions Through Active Client Buffer Management in Partitioned Video Broadcast,” in Proc. of International Workshop on Networked Group Communication, Nov. 1999.
[22] Z. Fei, I. Kamel, S. Mukherjee, and M. H. Ammar, “Providing Interactive Functions for Staggered Multicast Near Video-On-Demand Systems,” in Proc. of IEEE International Conference on Multimedia Computing and Systems, pp. 949-953, Jun. 1999.
[23] W. C. Feng, F. Jahanian, and S. Sechrest, “Providing VCR functionality in a Constant Quality Video-On-Demand Transportation Server,” in Proc. of ACM Multimedia, pp. 127-135, Jun. 1996.
[24] S. Fukunaga, T. Nakai, and H. Inoue, “Error-Resilient Video Coding by Dynamic Replacing of Reference Pictures,” IEEE GLOBECOM’96, pp. 1503-1508, Nov. 1996.
[25] D. L. Gall, “MPEG: A Video Compression Standard for Multimedia Applications,” Communications of the ACM, vol. 34, no. 4, pp. 46-58, Apr. 1991.
[26] A. Gazdar and A. Belghith, “Discrete Interactive Staggered Broadcasting,” in Proc. of IEEE Consumer Communications and Networking Conference, pp. 447-452, Jan. 2004.
[27] M. Ghanbari, “Postporocessing of Late Cells for Packet Video,” IEEE Trans. on Circuits and System for Video Technology, vol. 6, no. 6, pp. 669-678, Nov. 1996.
[28] B. Girod and N. Farber, “Feedback-Based Error Control for Mobile Video Transmission,” Proceedings of the IEEE, vol. 87, no. 10, pp. 1707-1723, Oct. 1999.
[29] A. Hu, “Video-on-Demand Broadcasting Protocols: A Comprehensive Study,” in Proc. of IEEE INFOCOM, pp. 508-517, Apr. 2001.
[30] K. A. Hua and S. Sheu, “Skyscraper Broadcasting: A New Broadcasting Scheme for Metropolitan Video-on-Demand Systems,” in Proc. of ACM SIGCOMM, pp. 89-100, Sep. 1997.
[31] K. A. Hua, Y. Cai, and S. Sheu, “Patching: A Multicast Technique for True Video-on-Demand,” in Proc. of ACM Multimedia, pp. 191-200, Sep. 1998.
[32] L. S. Juhn, and L. M. Tseng, “Fast Data Broadcasting and Receiving Scheme for Popular Video Service,” IEEE Transactions on Broadcasting, vol. 44, no.1 , pp. 100-105, Mar. 1998.
[33] L. S. Juhn, and L. M. Tseng, “Harmonic Broadcasting for Video-on-Demand Service,” IEEE Transactions on Broadcasting, vol. 43, no. 3, pp. 268–271, Sep. 1997.
[34] L. S. Juhu and L. M. Tseng, “Fast Broadcasting for Hot Video Access,” in Proc. of International Workshop on Real-Time Computing Systems and Applications, pp. 237-243, Oct. 1997.
[35] N. Kamiyama and V. O. K. Li, “An Efficient Deterministic Bandwidth Allocation Method in Interactive Video-on-Demand Systems,” in Proc. of IEEE Global Telecommunications Conference, pp. 664-671, Nov. 1998.
[36] M. Krunz1 and G. Apostolopoulos, “Efficient Support for Interactive Scanning Operations in MPEG-based Video-On-Demand Systems,” Multimedia Systems, vol. 8, no. 1, pp. 20-36, Jan. 2000.
[37] K. K. W. Law, J. C. S. Lui, and L. Golubchik, “Efficient Support for Interactive Service in Multi-Resolution VOD Systems,” The VLDB Journal, vol. 8, no. 2, pp. 133-153, Oct. 1999.
[38] J. H. Lee, and S. S. Lee, “A GOP-Skipping-Based Dynamic Transmission Scheme for Supporting Fast Scan Functions of a Stored Video”, in Proc. IEEE 1999 TENCON, 1999, pp. 919-922.
[39] V. O. K. Li, W. Liao, X. Qiu, and E. W. M. Wong, “Performance Model of Interactive Video-On-Demand Systems,” IEEE Journal on Selected Areas in Communications, vol. 14, no. 6, pp. 1099-1109, Aug. 1996.
[40] J. Liang and R. Talluri, “Tools for Robust Image and Video Coding in JPEG-2000 and MPEG-4 Standards,” in Proc. IS&T-SPIE Visual Commun. Image Processing 1999, Vol. 3653, pp. 40–51.
[41] W. Liao and V. O. Li, “The Split and Merge Protocol for Interactive Video-On-Demand,” IEEE Multimedia, vol. 4, no. 4, pp. 51-62, Oct.-Dec. 1997.
[42] W. Liao and V. O.K. Li, “Synchronization of Distributed Multimedia Systems with User Interactions,” Multimedia Systems, vol. 6, no. 3, pp. 196-205, May 1998.
[43] C. P. Lim, E. A. W. Tan, M. Ghanbari, and S. Ghanbari, “Cell loss concealment and packetization in packet video,” International Journal of Imaging Systems and Technology - Special Issue on Image and Video Compression, vol. 10, no. 1, pp. 54-58, Jan. 1999.
[44] C. W. Lin, J. Youn, J. Zhou, and M. T. Sun, “MPEG Video Streaming with VCR Functionality,” in Proc. of International Symposium on Multimedia Software Engineering, pp. 146-153, Dec. 2000.
[45] C. W. Lin, J. Zhou, J. Youn, and M. T. Sun, “MPEG Video Streaming with VCR Functionality,” IEEE Transaction on Circuit and System for Video Technology, vol. 11, no. 3, pp. 415-425, Mar. 2001.
[46] J. M. McManus and K. W. Ross, “Video-on-Demand Over ATM: Constant-Rate Transmission and Transport,” IEEE Journal on Selected Areas in Communications, vol. 14, no. 6, pp. 1087-1098, Aug. 1996.
[47] B. Ozden, A. Biliris, and R. Silberschatz, “A Low-cost Storage Server for Movie-on-Demand Database,” in Proc. of VLDB Conference, pp. 594-605, 1994.
[48] J. F. Paris and D.D.E. Long, “A Proactive Implementation of Interactive Video-On-Demand,” in Proc. of International Conference on Performance, Computing, and Communications, pp. 425-431, Apr. 2003.
[49] J. F. Paris, “An Interactive Broadcasting Protocol for Video-On-Demand,” in Proc. of IEEE International Conference on Performance, Computing, and Communications, pp. 347-353, Apr. 2001.
[50] J. F. Paris, S. W. Carter, and D. D. E. Long, “A Hybrid Broadcasting Protocol for Video-on-Demand,” in Proc. of Multimedia Computing and Network Conference, pp. 317-326, Jan. 1999.
[51] W. F. Poon, K. T. Lo, and J. Feng, “Adaptive Batching Scheme for Multicast Video-on-Demand Systems,” IEEE Transactions on Broadcasting, vol. 47 no. 1, pp. 66 -70, Mar. 2001.
[52] W. W. F. Poon, K. T. Lo, and J. Feng, “Design and Analysis of Multicast Delivery to Provide VCR Functionality in Video-on-Demand Systems,” in Proc. of International Conference on ATM, pp. 132-139, Jun. 1999.
[53] K. E. Psannis and M. G. Hadjinicolaou, “A New Methodology for Implementing Interactive Operations of MPEG-2 Compressed Video,” in Proc. of IEEE International Workshop on Digital and Computational Video, pp. 21-28, Feb. 2001.
[54] K. Ravindran, T. J. Gong, “Cost Analysis of Multicast Transport Architectures in Multiservice Networks”, IEEE/ACM Transactions on Networking, vol. 6, no. 1, pp. 94 -109, Feb. 1998.
[55] D. J. Reininger, D. Raychaudhuri, and J. Y. Hui, “Bandwidth Renegotiation for VBR Video Over ATM Networks,” IEEE Journal on Selected Areas in Communications, vol. 14, no.6, pp. 1076-1086, Aug. 1996.
[56] Tamer Shanableh and Mohammed Ghanbari, “The Importance of the Bi-Directionally Predicted Pictures in Video Streaming,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 3, pp. 402-414, Mar. 2001.
[57] P. J. Shenoy and H. M. Vin, “Efficient Support for Interactive Operations in Multi-Resolution Video Servers,” Multimedia Systems, vol. 7, no. 3, pp. 241-253, May 1999.
[58] P. J. Shenoy and H. M. Vin, “Efficient Support for Scan Operations in Multimedia Servers,” in Proc. of ACM Multimedia, pp. 131-140, Nov. 1995.
[59] A. Singru, A. Srivastava, and A. Kumar, “Framework for Interactive Video-on-Demand Service,” in Proc. of IEEE Annual International Phoenix Conference on Computers and Communications, pp. 636-642, Mar. 1995.
[60] T. C. Su, and J. S. Wang, “On-Demand Multicast Routing Scheme and Its Algorithms,” in Proc. of International Symposium on Parallel and Distributed Processing, pp 212-217, Apr. 1999
[61] R. Talluri, “Error-Resilient Video Coding in ISO MPEG-4 Standard,” IEEE Communications Magazine., vol. 36, no. 6, pp. 112–119, Jun. 1998.
[62] M. A. Tantaoui, K. A. Hua, and S. Sheu, “Interaction with Broadcast Video,” in Proc. of ACM Multimedia, pp. 29-38, Dec. 2002.
[63] Y. Tomita, T. Kimura, and T. Ichikawa, “Error Resilient Modified Interframe Coding System for Limited Reference Picture Memories,” in Proc. Picture Coding Symposium, pp. 743–748, Sep. 1997.
[64] M. Vernick, C. Venkatramani, and T. Chiueh, “Advantures in Building the Stony Brook Video Server,” in Proc. of ACM Multimedia, pp. 287-295, Nov. 1996.
[65] S. Viswanathan, and T. Imielinski, “Metropolitan Area Video-on-Demand Service Using Pyramid Broadcasting,” Multimedia Systems, vol. 4, no. 4, pp. 197-208, Aug. 1996.
[66] Y. Wang, J. Ostermann, and Y. Q. Zhang, Video Processing and Communications, Prentice Hall, 2002.
[67] S. Wenger, “Video Redundancy Coding in H.263+,” in Proc. AVSPN 97, Aberdeen, U.K., 1997.
[68] S. Wenger, G. Knorr, J. Ott, and F. Kossentini, “Error Resilience Support in H.263+”, IEEE Transaction on Circuit and System for Video Technology, vol. 8, no.7, pp. 867-877, Nov. 1998.
[69] J. W. Woods, and S. D. O’Neil, “Subband Coding of Images,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 34, no. 5, pp. 1278-1288, Oct. 1986.
[70] D. Wu, Y. T. Hou, W. Zhu, Y. Q. Zhang, and J. M. Peha, “Streaming Video over the Internet: Approaches and Directions,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 3, pp. 282-300, Mar. 2001.
[71] M. Y. Wu and W. Shu, “Efficient Support for Interactive Browsing Operations in Clustered CBR Video Servers,” IEEE Transactions on Multimedia, vol. 4, no. 1, pp. 48-58, Mar. 2002.
[72] M. Y. Wu and W. Shu, “Scheduling for Interactive Operations in Parallel Video Servers,” in Proc. of IEEE International Conference on Multimedia Computing and Systems, pp. 178-185, Jun. 1997.
[73] M. Y. Wu, “Providing Multiple Fast-Forward Ratios with Fixed Network/Disk Bandwidth,” in Proc. of IEEE International Symposium on Circuits and Systems, pp. 704-707, May 2002.
[74] P. F. You and J. F. Paris, “A Better Dynamic Broadcasting Protocol for Video-on-Demand,” in Proc. of IEEE International Performance, Computing and communications Conference, pp. 657-664, Apr. 2001.
[75] R. Zhang, S. L. Regunathan, and K. Rose, “Video Coding with Optimal Inter/Intra Mode Switching for Packet Loss Resilience,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 6, pp. 966–976, Jun. 2000.
[76] Q. F. Zhu, Y. Wang, and L. Shaw, “Coding and Cell-Loss Recovery in DCT-Based Packet Video,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 3, no. 3, pp. 248-258, Jun. 1993.
[77] ISO/IEC 11172-2 (MPEG-1), “Information Technology – Coding of Moving Pictures and Associated Audio for Digital Storage Media at Up to About 1,5 Mbit/s – Part 2: Video,” 1993.
[78] ISO/IEC 13818-2 (MPEG-2), “Information Technology – Generic Coding of Moving Pictures and Associated Audio Information: Video,” 1996.
[79] ISO/IEC 14496-2 (MPEG-4), “Information Technology – Coding of Audio-Visual Objects – Part 2: Visual,” 1998.
[80] ISO/IEC JTC1/SC29/WG11 MPEG96/M0768, Iterated Systems Inc., “An Error Recovery Strategy for Videophone Applications,” Mar. 1996.
[81] ITU-T, SG15/WP15/1, LBC-95-033, Telenor R&D, “An Error Resilience Method Based on Back Channel Signaling and FEC,” Jan. 1996.
[82] Apple QuickTime Player, Apple Corporation Inc., http://www.apple.com/quicktime/
[83] http://www.mpeg.org/MSSG
[84] http://www.xvid.org
[85] RealOne$ Player, RealNetworks, http://www.real.com/
[86] TiVo$ Technologies, TiVo Inc., http://www.tivo.vom/
[87] Windows$ Media Player, Microsoft Corporation Inc., http://www.microsoft.com/windows/windowsmedia/