研究生: |
李致達 Chih-Ta Lee |
---|---|
論文名稱: |
新型Chondroitin Sulfate接枝PLLA共聚物之合成及其在藥物傳輸與組織工程之應用 Preparation of Novel Amphiphilic Poly(L-lactide) -graft-Chondroitin Sulfate Copolymer and Its Application in Drug Delivery and Tissue Engineering |
指導教授: |
李育德
Yu-Der Lee |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 189 |
中文關鍵詞: | 軟骨素 、聚乳酸 、接枝共聚物 、藥物傳輸 、組織工程 |
外文關鍵詞: | Chondroitin sulfate, Poly(Lactide), Graft copolymer, Drug delivery, Tissue engineering |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗主要是利用合成的方式將天然的高分子與合成高分子相結合,以得到一具有親、疏水的兩性高分子接枝共聚物CSn-PLLA,並應用在藥物釋放及組織工程領域,以及探討材料對細胞生長的影響。
在合成方面,將軟骨細胞外間質的重成份之一Chondroitin sulfate (CS)上的OH官能基與L-lactide單體進行開環聚合反應,以得到接枝型的兩性共聚物。其中,CS在共聚物中的含量是以NMR來進行定量,在實驗的過程中,其在共聚物中的含量會隨進料比例、反應條件而改變,大致介於1.1%-15.4%之間。在材料性質方面,隨不同比例的材料進行分析(IR、DSC、XRD、酵素水解性質),其材料的特性會隨CS在共聚物中的含量而有所改變,因此在實驗中也加以探討。
在藥物釋放應用方面,材料的特性對應用在藥物釋放有相當影響,因此在本研究主要是探討在實驗中所合成出來的兩性接枝型共聚物其在水溶液中的聚集行為,並量測材料的臨界聚集濃度(Critical aggregatiob concentration)大致介於4.3×10-3-9.1×10-3之間、粒子在水溶液中的平衡常數(1.41×106-3.65×105)、粒子在水溶液中具有良好的穩定性以及觀察粒子的形態(AFM、FE-SEM),且將材料進行細胞毒性測試(MTT assay),觀察材料對細胞生長的影響,也利用共焦顯微鏡(Confocal microscopy)觀察到粒子能對細胞進行非定點式的穿透。同時,在本實驗中,也分別對親、疏水性藥物進行包覆及釋放,觀察材料對不同性質的藥物包覆的影響。
在組織工程應用方面,由於CS是軟骨細胞外間質的重要成份之一,將其導入合成材料中,使材料做為細胞培養用支架時能具有更類似細胞外間質的特性,以供軟骨細胞生長。在實驗中,將合成的兩性高分子CSn-PLLA與PLLA混摻,並以鹽析及溶劑揮發的方式做成具內部連通的多孔性支架,孔隙度可達85 %以上,並由XRD分析可知材料的混摻相當均勻,以及具有足夠的機械強度及親水性可供軟骨細胞貼覆生長。在細胞實驗方面,將軟骨細胞直接種在多孔性基材上,觀察細胞在基材上生長良好,在進行細胞長期培養,觀察軟骨細胞在基材上的生長狀況並已正常表現,包括以切片染色的方式以可看出細胞已生長出正常軟骨的軟骨腔(lacuna)結構、以及由軟骨細胞分泌細胞外間質的定量分析可知軟骨細胞已分泌出大量的新生細胞外間質(包括Collagen、GAGs),並由RT-PCR的方式觀察細胞基因表現之情形也與天然軟骨的表現相符合(GAPDH、Type II collagen、aggrecan),已表現出大量的aggrecan以及正常軟骨分泌的第二型膠原蛋白,因此藉由細胞生長之結果來評估所合成的材料對軟骨細胞具有促進其再生成組織的能力。
In this investigation, new biodegradable brush-like amphiphilic copolymers were synthesized by ring opening polymerization. Poly(L-lactide) (PLLA) was grafted onto chondroitin sulfate (CS), which is one of the physiologically significant specific glycosaminoglycans (GAGs), using a tin octanoate [Sn(Oct)2] catalyst in DMSO. The hydroxyl groups of the chondroitin sulfate were used as initiating groups. These functional groups enable specific mucoadhesion or receptor recognition. The degree of substitution (DS), the degree of polymerization (DP) and the chondroitin sulfate content (from 1.1% to 15.4%) were analyzed by 1H-NMR. The characteristics of these grafted copolymers, including the structure, the thermal properties and biodegradability etc., were examined with respect to CS content. Meanwhile, the amphiphilic core (PLLA) - corona (CS) nanoparticles, with size smaller than 200 nm, was examined by dynamic light scattering (DLS). Zeta potential analysis exhibited the value in the range -18.3 to -49.4 mV. The morphologies of the nanoparticles were observed by field-emission scanning electron microscopy (FE-SEM). The nanoparticles with lower cytotoxicity were examined by MTT assay. Furthermore, the in vitro BSA release kinetics of those CSn-PLLA nanoparticles was also determined in this study.
Novel polymeric amphiphilic copolymers were synthesized using chondroitin sulfate (CS) as a hydrophilic segment and poly(L-lactide) (PLLA) as a hydrophobic segment. Micelles of those copolymers were formed in an aqueous phase and were characterized by 1H NMR spectra, fluorescence techniques, dynamic light scattering (DLS), atomic force microscopy (AFM) and confocal microscopy. Their critical aggregation concentrations (CAC) are in the range of 0.0043 to 0.0091 mg/mL at 25oC. The partition equilibrium constants, Kv, of the pyrene probe in the aqueous solution were from 3.65×105 to 1.41×106 at 25 oC. The mean diameters of the micelles were below 200 nm, and their sizes were narrowly distributed. The AFM images revealed that the self-aggregates were spherical. Additionally, the CSn-PLLA micelles can efficiently transport within the cells via endocytosis as observed from confocal microscopy.
In cartilage tissue engineering, the graft copolymer was blended with poly(L-lactide) (PLLA) to form biomimic porous scaffolds. Natural CS was introduced into the polyester matrix to promote the proliferation of cells. Three-dimensional sponge-like scaffolds were fabricated by a combination of salt leaching and solvent casting methods. The morphology of the scaffolds was observed with scanning electron microscopy (SEM) with average pore size between 50~250 μm and its porosity was high (>85%). Compression analysis indicated that the mechanical properties of the scaffold were adequate to support the proliferation of cells. The hydrophilicity increased with increasing the copolymer content in the blend, as determined by measuring the contact angle. H&E, Masson and Safranin-O staining showed that cells formed a chondro-tissue gradually. Histological results revealed that abundant cartilaginous matrices surrounded spherical chondrocytes in the center of the explants. Chondrocytes cultured in this ECM-like scaffold maintained a round morphology phenotype, characterized by a significant quantity of extracellular matrix of sulfated glycosaminoglycans and collagens. Additionally, phenotypic gene expression (RT-PCR) indicated that chondrocytes expressed transcripts that encoded type II collagen and aggrecan, and generated sulfated glycosaminoglycans.
參 考 文 獻
[1] A.S. Sawheney, C.P. Pathak, and J.A. Hubbel, Macromolecules 26 (1993) 581-587.
[2] J.B. Park, R.S. Lakes “BIOMATERIALS An Introduction 2nd ed.” Plenum Press, New York (1992) P.2-3.
[3] J.D. Abraham, K. Joseph, D. Wiseman, “Handbook of biodegradable polymers” harwood academic publishers, 1997.
[4] T. Livingston, P. Ducheyne, J. Garino, Journal of Biomedical Materials Research. 62 (2002) 1-13.
[5] G.H. Altman, R.L. Horan, H.H. Lu, J. Moreau, I. Martin, J.C. Richmond, D.L. Kaplan, Biomaterials 23 (2002) 4131-4141.
[6] L.A. Solchaga, J. Gao, J.E. Dennis, A. Awadallah, M. Lundberg, A.I. Caplan, V.M. Goldberg, Tissue Engineering 8 (2002) 333-347.
[7] K. Kakehi, M. Kinoshita, S.I. Yasueda, Journal of Chromatography B 797 (2003) 347-355.
[8] K. Mabuchi, T. Obara, K. Ikegami, T. Yamaguchi, T. Kanayama, Clinical Biomechanics 14 (1999) 352-356.
[9] E. Bell, Journal of Biomechanical Engineering. 113 (1991) 113.
[10] J.M. Pachence, Journal of Biomedical Materials Research. 33 (1996) 35-40.
[11] K. Kühn, Matrix Biology 14 (1994) 439-445.
[12] L. Shapior, S. Cohen, Biomaterials 18 (1997) 583.
[13] W.C. Chen, S.S. Cheng, Water Science and Technology 34 (1996) 51-58.
[14] S.V. Madihally, H.W.T. Mattew, Biomaterials 20 (1999) 1133-1142.
[15] Y. Okamoto, R. Yano, K. Miyatake, I. Tomohiro, Y. Shigemasa, S. Minami, Carbohydrate Polymers 53 (2003) 337-342.
[16] R.A.A. Muzzarelli, N. Frega, M. Miliani, C. Muzzarelli, M. Cartolari, Carbohydrate Polymers 43 (2000) 263-268.
[17] D.K.F. Meijer, G. Molema, F. Moolenaar, D. De Zeeuw, P.J. Swart, Journal of controlled release 39 (1996) 163-172.
[18] H.Y. Park, I.H. Song, J.H. Kim, W.S. Kim, International Journal of Pharmaceutics 175 (1998) 231-236.
[19] J. Wang, Y. Tabata, D. Bi, K. Morimoto, Journal of controlled release 73 (2001) 223-231.
[20] O. Toledano, S. Magdassi, Journal of Colloid and Interface science 200 (1998) 235-240.
[21] L.F. Wang, S.S. Shen, S.C. Lu, Carbohydrate Polymers 52 (2003) 389-396.
[22] K.R. Kirker, Y. Luo, J.H. Nielson, J. Shelby, G.D. Prestwich, Biomaterials 23 (2002) 3661-3671.
[23] R.U. Margolis, R.K. Margolis, Cell & Tissue Research 290 (1997) 343-348.
[24] J.P. Bali, H. Cousse, E.S. Neuzil, Arthritis Rheum 31 (2001) 58-68.
[25] R. Zhang, P.X. Ma, Processing of polymer scaffolds: phase separation. In Methods of Tissue engineering, Academic Press, San Diego (2001) 715.
[26] J.M. Pachence, J. Kohn, Biodegradable Polymers. In Principle of Tissue engineering, 2nd edition. Academic Press, San Diego (2000) 263.
[27] S. Li, Journal of Biomedical Materials Research 48 (1999) 342.
[28] J.E. Bergsma, F.R. Rozema, R.R.M. Bos, G. Boering, W.C. Bruijn, A.J. Pennings, Biomaterials 16 (1995) 267-274.
[29] V. Hasirci, K. Lewandrowski, J.D. Gresser, D.L. Wise, D.J. Trantolo, Journal of Biotechnology 86 (2001) 135-150.
[30] J.C. Middleton, A.J. Tipton, Biomaterials 21 (2000) 2335-2346.
[31] Y.J. Du, G.J. Lemstra, A,J, Nijenhuis, A.M. Hubb, Macromolecules 28 (1995) 2124-2132.
[32] P.X. Ma, R. Langer, In Polymers in Medicine and Pharmacy. Materials Research Society (1995) 99.
[33] A.M. Reed, D.K. Gilding, Polymer 22 (1981) 494-498.
[34] Y. You, S.W. Lee, J.H. Youk, B.M. Min, S.J. Lee, W.H. Park, Polymer Degradation and stability 90 (2005) 441-448.
[35] C.G. Pitt, M.M. Gratzl, G.L. Kimmel, J. Surles, A. Schindler, Biomaterials 2 (1981) 215-220.
[36] S. Namekawa, S. Suda, H. Uyama, S. Kobayashi, International Journal of Biological Macromolecules 25 (1999) 145-151.
[37] K.Park, W.S.W. Shalaby, H. Park, Biodegradable hydrogels for drug delivery (1993) P.13~34.
[38] K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, K.M. Shakesheff, Chemica Reviews 99 (1999) 3181-3198.
[39] P. Beck, J. Kreuter, I. Fichtner, Journal of Microencapsulation, 10 (1993) 101.
[40] J.O. Hollinger, Biomedical Applications of Synthetic Biodegradable Polymers (1995) P. 224.
[41] R. Langer, Nature 392 (1998) 5-10.
[42] J.R. Brouwers, Pharmaceutical World Science 18 (1996) 153-162.
[43] W. Dang, O.M. Colvin, H. Berm, W.M. Saltzman, Cancer Research 54 (1994) 1729-1735.
[44] K.A. Walter, R. Tamargo, A. Oliver, P.C. Burger, H. Brem, Neurosurgery 37 (1995) 1129-1145.
[45] N. Katayama, R. Tanaka, Y. Ohno, C. Ueda, T. Houjou, K. Takada, International Journal of Pharmaceutical 115 (1995) 87-93.
[46] W. Kalala, R. Kinget, G. Van Den Mooter, C. Samyn, International Journal of Pharmaceutical 139 (1996) 187-195.
[47] P. Omathanu, P. Ramesh, Chemical Biology 5 (2001) 447-451.
[48] D.W. Rafferty, J.L. Koenig, Journal of controlled release 83 (2002) 29-39.
[49] S.W. Sanders, Journal of controlled release 39 (1996) 389-397.
[50] H. Brem, S. Piantadosi, P.C. Burger, M. Walker, R. Selker, N.A. Vick, K. Black, M. Sisti, The lancet 345 (1995) 1008-1012.
[51] S.P. Rigby, C.F. Van der Walle, J.H. Raistrick, Journal of controlled release 96 (2004) 97-100.
[52] P. Sriamornsak, J. Nunthanid, International Journal of Pharmaceutics 160 (1998) 207-212.
[53] I. Krogel, R. Bodmeier, Journal of controlled release 61 (1999) 43-50.
[54] G.A. Peyman, D. Yang, B. Khoobehi, H.H. Rahimy, S.Y. Chin, Ophthalmic Literature 50 (1999) 28.
[55] A.K. Dash, G.C. Cudworth, Journal of Pharmaceutical and Toxicological Methods 40 (1998) 1-12.
[56] F. Marianna, Pharmaceutical Science & Technology Today 3 (2000) 417-425.
[57] J. Elisseeff, A. Kristi, S. Derek, M. Winnette, R. Mark, Y. Michael, L. Robert, Plastic & Reconstructive Surgery 104 (1999) 1014-1022.
[58] D.L. Elbert, J.A. Hubbell, Biomacromolecules 2 (2001) 430-441.
[59] L.Q. Wang, K. Tu, Y. Li, J. Zhang, L. Jiang, Z. Zhang, Reactive & Functional Polymers 53 (2002) 19-27.
[60] J.V.S. Gobburu, W.J. Jusko, Advanced Drug Delivery Reviews 46 (2001) 45-47.
[61] A.J. Hubbell, Molecular Medicine Today 1 (1995) 134-139.
[62] J.A. Hubbell, Current Opinion in solid state & Material Science 3 (1998) 246-251.
[63] G.G.P. van der Wijdeven, Journal of controlled release 85 (2002) 145-162.
[64] A. Hatefi, B. Amsden, Journal of controlled release 80 (2002) 9-28.
[65] P.J. Gillbar, B. Pharm, Journal of Pain and Symptom Management 17 (1999) 197-207.
[66] M.C. Jones, J.C. Leroux, European Journal of Pharmaceutics and Biopharmaceutics 48 (1999) 101.
[67] K. Okuyama, I.W. Lenggoro, Chemical Engineering Science 58 (2003) 537-547.
[68] F. Iskandar, L. Gradon, K. Okuyama, Journal of Colloid and Interface Science 265 (2003) 296-303.
[69] C. Schmidt, R. Bodmeier, Journal of controlled release 57 (1999) 115-125.
[70] H. Murakami, M. Kobayashi, H. Takeuchi, Y. Kawashima, International Journal of Pharmaceutics 187 (1999) 143-152.
[71] Y. Efendiev, M.R. Zachariah, Chemical Engineering Science 56 (2001) 5763-5769.
[72] A.M. Hillery, A.W. Lioyd, J. Swarbrick “Drug Delivery and Targeting” London and New York (2001) p.17-20.
[73] N.B. Graham, M. Zulfiqar, Polymer 30 (1989) 2130.
[74] R. Hejazi, M. Amiji, Journal of controlled release 89 (2003) 151-165.
[75] V.R. Sinha, Rachna Kumria, International journal of pharmaceutics 224 (2001) 19-38.
[76] J.K. Thomas, K. Kalyanasundaram, Journal of American Chemical Society 99 (1977) 2039-2044.
[77] I. Astafieva, X.F. Zhong, A. Eisenberg, Macromolecules 26 (1993) 7339-7352.
[78] H.R. Kricheldorf, C. Boettcher, K. Uwe. Tonnes, Polymer 33 (1992) 2817-2824.
[79] K. Kalyanasundaram, J.K. Thomas, Journal of American Chemical Society 99 (1997) 2039-2044.
[80] K.P. Ananthapadamanabhan, E.D. Goddard, N.J. Turro, P.L. Kuo, Langmuir 1 (1985) 352-355.
[81] C. Allen, Y. Yu, D. Maysinger, A. Eisenberg, Bioconjugate Chemistry 9 (1998) 564-572.
[82] C. Zhao, M.A. Winnik, G. Riess, M.D. Croucher, Langmuir 6 (1990) 514-516.
[83] K. Kalyanasundoram, J.K. Thomas, Journal of American Chemical Society 99 (1988) 2039-2044.
[84] G.S. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Langmuir 9 (1993) 945-949.
[85] K.N. Prasad, T.T. Luong, A.T. Florence, J. Paris, C. Vautin, M. Seiller, F. Puisieux, Journal of Colloid Interface Science 90 (1982) 303-309.
[86] G.S. Kwon, K. Kataoka, Advanced drug delivery reviews 16 (1995) 295-309.
[87] A. Rosler, Vandermeulen, W.M. Guido, Advanced Drug Delivery Reviews 53 (2001) 95-108.
[88] M. Wilhelm, C.L. Zhao, Y. Wang, R. Xu, M.A. Winnik, J.L. Mura, G. Riess, M.D. Croucher, Macromolecules 24 (1991) 1033-1040.
[89] S.C. Lee, Y. Chang, J.S. Yoon, C. Kim, I.C. Kwon, Y.H. Kim, S.Y. Jeong, Macromolecules 32 (1999) 1847-1852.
[90] Y. Nagasaki, T. Okada, C. Scholz, M. Iijima, M. Kato, K. Kataoka, Macromolecules 31 (1998) 1473-1479.
[91] D.M. Small, In The Bile Acids, Chemistry, Physiology, and Metabolism; Nair, P.P., Kritchevsky, D., Eds.; Plenum Press: New York, 1971; p249.
[92] M. Almgren, F. Grieser, J.K. Thoms, J. Am. Chem. Soc. 101 (1979) 279-291.
[93] S.C. Lee, Y. Chang, J.S. Yoon, C. Kim, I.C. Kwon, Y.H. Kim, S.Y. Jeong, Macromolecules 32 (1999) 1847-1852.
[94] L. Zhang, A. Eisenberg, Journal of American Chemical Society 118 (1996) 3168-3181.
[95] L. Zhang, H. Shen, A. Eisenberg, Macromolecules 30 (1997) 1001-1011.
[96] A.A. Salyers, American Journal of Clinical Nutrition 32 (1979) 158-163.
[97] A.A. Salyers, M. Brien, Journal of Bacteriol 143 (1980) 772-780.
[98] A. Schindler, Y.M. Hibionda, C.G. Pitt, Journal of Polymer Science 20 (1982) 319.
[99] Y. Li, J. Nothnagel, T. Kissel, Polymer 38 (1997) 6197-6206.
[100] R.A. Miller, J.M. Brady, D.E. Cutright, Journal of Biomedical Materials Research 11 (1977) 711.
[101] Y. Li, C. Volland, T. Kissel, Polymer 39 (1998) 3087-3097.
[102] A. Eisenberg, C. Allen, D. Maysinger, Colloids and Surface B: Biointerfaces 16 (1999) 3-27.
[103] J.S. Rodrigues, N.S. Santos-Magalhaes, L.C.B.B. Coelho, P. Couvreur, G. Ponchel, R. Gref, Journal of controlled release 92 (2003) 103-112.
[104] K.A. Janes, P. Calvo, M.J. Alonso, Advanced Drug Delivery Reviews 47 (2001) 83-97.
[105] P. Calvo, C. Remunan-Lopez, J.L. Vila-Jato, M.J. Alonso, Journal of Applied Polymer Science 63 (1997) 125-132.
[106] R. Langer, J.P. Vacanti, Science 260 (1993) 920.
[107] P.X. Ma, Tissue engineering, In encyclopedia of polymer science and technology, 3rd edition, John Wiley & Sons, N.J. (2004)
[108] J.A. Buckwalter, H.J. Mankin, AAOS Inst Course Lect 47 (1998) 487-504.
[109] L. Peterson, M. Brittberg, I. Kiviranta, E.L. Akerlund, A. Lindahl, American Journal of Sports Medicine30 (2002) 2-12.
[110] J. Bloch, E.G. Fine, N. Bouche, A.D. Zurn, P. Aebischer, Experiental Neurology 172 (2001) 425-432.
[111] G.N. King, N. King, A.T. Cruchley, J.M. Wozney, F.J. Hughes, Journal of Dental Research 76 (1997) 1460-1470.
[112] R. Zhang, P.X. Ma, Journal of Biomedical Materials Research 52 (2000) 430-438.
[113] D. Palmes, H.U. Spiegel, Biomaterials 25 (2004) 1601-1611.
[114] M.W. Dacis, J.P. Vacant, Biomaterials 17 (1996) 365-372.
[115] J.J. Marler, J. Upton, R. Langer, J.P. Vacanti, Advanced Drug Delivery Review 33 (1998) 165-182.
[116] L.E. Meredith, Materials Today 7 (2004) 48-55.
[117] M. Nomi, A. Atala, P.D. Coppi, S. Soker, Molecular Aspects of Medicine 23 (2002) 463-483.
[118] R.M. Nerum, International Congress Series 1262 (2004) 122-125.
[119] T. Ahsan, R.L. Sah, Osteoarthritis and Cartilage 7 (1999) 29-40.
[120] J.K. Francis Suh, Howard W.T. Matthew, Biomaterials 21 (2000) 2589-2598.
[121] D.W. Hutmacher, Biomaterials 21 (2000) 2529-2543.
[122] E. Bell, Journal of Biomechanical Engineering 113 (1991) 113.
[123] K.Y. Lee, D.J. Mooney, Chemical Reviews 101 (2001) 1869-1879.
[124] C.M. Klapperich, C.R. Bertozzi, Biomaterials 25 (2000) 5631-5641.
[125] J. Raghunath, H.J. Salacinski, K.M. Sales, P.E. Butler, A.M. Seifalian, Current Opinion in Biotechnology 16 (2005) 503-509.
[126] R. Cortesini, Transplant Immunology 15 (2005) 81-89.
[127] T.A. Holland, A.G. Mikos, Journal of controlled release 86 (2003) 1-14.
[128] V. Luginbuehl, L. Meinel, H.P. Merkle, B. Gander, European Journal of pharmaceutics and Biopharmaceutics 158 (2004) 197-208.
[129] D. Pfander, T. Cramert, G. Weseloh, O. Pullig, D. Schuppan, M.Bauer, B. Swoboda, Osteoarthritis and Cartilage 7 (1999) 548-559.
[130] B. Pellaumail, A. Wartrin, D. Loeuille, P. Netter, G. Berger, P. Laugier, A. Saied, Osteoarthritis and Cartilage 10 (2002) 535-541.
[131] J.K. Suh, Z. Li, S.L.Y. Woo, Journal of Biomechanics 28 (1995) 357-364.
[132] G. Chen, T. Ushida, T. Tateishi, Materials Science and Engineering C 17 (2001) 63-69.
[133] S.P. Baldwin, W.M. Saltzman, Trends in Polymer Science 4 (1996) 177-182.
[134] C.J. Hunter, A.G. Imler, P. Malaviya, R.M. Nerem, M.E. Levenston, Biomaterials 23 (2002) 1249-1259.
[135] A.J. Nixon, Clinical Techniques in Equine Practice 1 (2002) 257-269.
[136] J.K. Suh, S. Scherping, T. Marui, R. Steadman, S.L.Y. Woo, Operative Techniques in Sport Medicine 3 (1995) 78-86.
[137] J.A. Buckwalter, Operative Techniques in Orthopaedics 7 (1997) 263-269.
[138] L. Lippiello, Osteoarthritis and Cartilage 11 (2003) 335-342.
[139] C.D. Hoemann, J. Sun, A. Legare, M.D. Mckee, M.D. Buschmann, Osteoarthritis and Cartilage 13 (2005) 318-329.
[140] T. Kelly, S. Samuel, Aesthetic Surgery Journal 20 (2000) 471-475.
[141] S. Tanaka, C. Hamanishi, H. Kikuchi, K. Fukuda, Seminars in Arthritis and Rheumatism 27 (1998) 392-399.
[142] T.G. Benedek, Osteoarthritis and Cartilage 14 (2006) 203-209.
[143] I.V. Yannas, Journal of Cellular Biochemistry 56 (1994) 188-191.
[144] S.M. Mueller, S. Shortkroff, T.O. Schneider, H.A. Breinan, I.V. Yannas, M. Spector, Biomaterials 20 (1999) 701-709.
[145] P.S. Donzelli, R.L. Spilker, G.A. Ateshian, V.C. Mow, Journal of Biomechanics 32 (1999) 1037-1047.
[146] A. Hayes, S.E. Clift, A.W. Miles, Medical Engineering & Physics 19 (1997) 242-252.
[147] J.C. McCarthy, J.A. Lee, Clinical Orthopaedics and Related Research 405 (2002) 122-128.
[148] M.L. Cameron, K.K. Briggs, J.R. Steadman, Am. Journal of Sports Medicine 31 (2003) 83-86.
[149] A.E. Gross, Journal of Arthroplasty 18 (2003) 14-17.
[150] G. Bentley, D. Norman, F. Haddad, Operative Techniques in Sport Medicine 8 (2000) 163-167.
[151] G. Kordas, J.S. Szabo, L. Hangody, Arthroscopy: The journal of Arthroscopic and Related Surgery 22 (2006) 414-421.
[152] T. Makino, H. Fujioka, M. Terukina, S. Yoshiya, N. Matsui, M. Kurosaka, Arthroscopy: The journal of Arthrosonic and Related Surgery 20 (2004) 837-840.
[153] L. Hangody, G. Kish, Z. Karpati, R. Eberhart, Operative Techniques in Orthopaedics 7 (1997) 312-322.
[154] P. Feczko, L. Hangody, J. Varga, L. Bartha, Arthroscopy: The Journal of Arthroscopic and Related Surgery 19 (2003) 755-761.
[155] P.M. van der Kraan, P. Buma, T. van Kuppevelt, W.B. van Den Berg, Osteoarthritis and Cartilage 10 (2002) 631-637.
[156] C.H. Chang, T.F. Kuo, C.C. Lin, C.H. Chou, K.H. Chen, F.H. Lin, H.C. Liu, Biomaterials 27 (2006) 1876-1888.
[157] P.X. Ma, R. Langer, In Tissue Engineering Methods and Protocols. Humana Press, NJ, (1999) 47.
[158] L. Lu, S.J. Peter, M.D. Lyman, H.L. Lai, S.M. Leite, J.A. Tamada, J.P. Vacanti, R. Langer, A.G. Mikos, Biomaterials 21 (2000) 1595-1605.
[159] P.X. Ma, R. Zhang, G. Xiao, R. Franceschi, Journal of Biomedical Materials Research 54 (2001) 284-293.
[160] S.N. Park, J.C. Park, H.O. Kim, M.J. Song, H. Suh, Biomaterials 23 (2002) 1205-1212.
[161] M.H. Ho, P.Y. Kuo, H.J. Hsieh, T.Y. Hsien, L.T. Hou, J.Y. Lai, D.M. Wang, Biomaterials 25 (2004) 129-138.
[162] Q. Hou, D.W. G.J. Feijen, Biomaterials 24 (2003) 1937-1947.
[163] S.H. Oh, S.G. Kang, E.S. Kim, S.H. Cho, J.H. Lee, Biomaterials 24 (2003) 4011-4021.
[164] P.X. Ma, B. Schloo, D. Mooney, R. Langer, Journal of Biomedical Materials Research 29 (1995) 1587-1595.
[165] C.A. Vacanti, R. Langer, B. Schloo, J.P. Vacanti, Plastic & Reconstructive Surgery 88 (1991) 753-759.
[166] P. Dubois, M. Krishnan, R. Narayan, Polymer 40 (1999) 3091-3100.
[167] T. Kawakatsu, K. Kawasaki, M. Furusaka, H. Okabayashi, T. Kanaya, Journal of Chemical Physics 102 (1995) 2247-2253.
[168] T. Groth, G. Altankov, Cell-surface interactions and the tissue compatibility of biomedical materials. (DC: ISO Press, Wasgington, 1998) P.12.
[169] Q. Cai, J. Yang, J. Bei, S. Wang, Biomaterials 23 (2002) 4483-4492.