研究生: |
鄭凱予 Cheng, Kai-Yu |
---|---|
論文名稱: |
高電壓4H-SiC溝渠式接面位障蕭基二極體設計與製作 The Design and Fabrication of High Voltage 4H-SiC Trench Junction Barrier Schottky Diode |
指導教授: |
黃智方
Huang, Chih-Fang |
口試委員: |
蔡銘進
李坤彥 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 碳化矽 、蕭基二極體 、溝渠結構 、高電壓 、位障蕭基二極體 |
外文關鍵詞: | 4H-SiC, Schottky diode, Trench structure, High voltage, Junction barrier schottky diode |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文提出新穎的4H-SiC溝渠式接面位障蕭基二極體,結合了floating guard ring 的邊緣終結結構,擁有低漏電流與低導通電壓的優點。藉由溝渠式的結構設計,可降低表面電場並減少蕭基位障降低效應,故此結構可使用低功函數的蕭基金屬,降低導通電壓而不用忍受高的反向漏電流。在元件設計、製作以及特性探討上,針對不同的離子佈植間距、溝渠深度、基板濃度、蕭基金屬等特性分析,並以模擬去預測元件特性。TJBS元件於反向偏壓600伏特時,其漏電流密度較JBS小十倍,其中溝渠深度2μm的Ti-TJBS元件,順向電壓降為0.96 V,反向漏電流密度小於1×10-7 A/cm2;在室溫與升高溫度時,TJBS元件相較於所製作的SBD與JBS元件,擁有更低的漏電流;當TJBS操作於高電流密度及高溫時,可觀察到有導電率調變的現象。另一方面, Ti-JBS元件經由500 °C 5分鐘的熱退火,可增加其蕭基位障高度,由0.83 eV增加至1.14 eV,導通電壓由0.5 V增加至1 V,達到約1 kV的崩潰電壓。
This thesis presents a novel structure of 4H-SiC trench junction barrier schottky diode with floating guard ring edge termination, which has low leakage current and low turn-on voltage. In addition, by incorporating the trench structure in the design, the electric field at the schottky interface and the corresponding barrier lowering effect can be reduced. Therefore, the proposed structure can be fabricated with low work function metal to reduce turn-on voltage without suffering high reverse leakage current. Different p+ spacing, trench depth, schottky metal and doping concentrations were designed, fabricated and characterized. Simulations were also performed to predict device characteristics. TJBS device has leakage current density ten times smaller than the traditional JBS device at 600 V. The forward voltage drop of 2 μm trench Ti-TJBS is 0.96 V while the reverse current density is less than 1×10-7 A/cm2. At room temperature as well as at elevated temperature, the proposed TJBS device has lower leakage current density than that of the SBD and JBS devices. Conductivity modulation behavior is observed in TJBS at high current densities and high temperatures. On the other hand, the blocking voltage of Ti-JBS about 1 kV was achieved using a thermal treatment to increase Schottky barrier height, which is increased from 0.83 eV as deposited to 1.14 eV after 500 °C anneal for 5 minutes. The turn-on voltage is increased from 0.5 V to 1 V.
[1]H. S. Lee, ”High Power Bipolar Junction Transistors in Silicon Carbide,” ISRN KTH/EKT/FR-2005/6-SE.
[2]R. S. Singh, J. A. Cooper, M. R. Melloch, T. P. Chow, and J. W. Palmour, “SiC Power Schottky and PiN Diodes,” IEEE Trans. Electron Devices, Vol. 49, pp. 665-671, 2002.
[3]C. M. Zetterling, “Process Technology for Silicon Carbide Devices,” The Institution of Electrical Engineers, 2002.
[4]R. S. Singh, J. A. Cooper, M. R. Melloch, T. P. Chow, and J. W. Palmour, “SiC Power Schottky and PiN Diodes,” IEEE Trans. Electron Devices, Vol. 49, pp. 665-671, 2002.
[5]B. J. Baliga, Modern Power Devices, New York, Wiley, 1987.
[6]B. J. Baliga, Power Semiconductor Devices, Boston, PWS, 1996.
[7]R. Singh, S. H. Ryu, J. W. Palmour, A. R. Hefner, and J. Lai, “1500V, 4Amp 4H-SiC JBS Diodes,” IEEE Int. Symp. on Power Semiconductor Devices and ICs, pp. 101-104 , 2000.
[8]R. Singh, D. C. Capell, A. R. Hefner, J. Lai, and J. W. Palmour, “High-Power 4H-SiC JBS Rectifiers,” IEEE Trans. Electron Devices, Vol.49, No.11, 2002.
[9]B. J. Baliga, “The pinch rectifier: A low-forward-drop high-speed power diode,” IEEE Electron Device Lett., vol. EDL-5, no. 6, pp. 194–196, 1984.
[10]C.-M. Zetterling, F. Dahlquist, N. Lundberg, M. Ostling, K. Rottner, and L. Ramberg, “Junction barrier Schottky diodes in 6H-SiC,” Solid State Electron., vol. 42, no. 9, pp. 1757–1759, 1998.
[11]F. Dahlquist, J.-O. Svedberg, C.-M. Zetterling, M. Ostling, B. Breitholtz, and H. Lendenmann, “A 2.8 kV, forward drop JBS diode with low leakage,” Mater. Sci. Forum, vol. 338–342, pp. 1179–1182, 2000.
[12]Brett A. Hull, Joseph J. Sumakeris, Michael J. O’Loughlin, Qingchun Zhang, Jim Richmond, Adrian R. Powell,” Performance and Stability of Large-Area 4H-SiC 10-kV Junction Barrier Schottky Rectifiers,” IEEE Trans. Electron Devices, VOL. 55, NO. 8, AUGUST 2008.
[13]K. J. Schoen, J. P. Henning, J. M. Woodall, J. A. Cooper Jr., and M. R. Melloch, “A Dual-Metal-Trench Schottky Pinch-Rectifier in 4H-SiC,” Mat. Sci. Forum, 264-268, 945, 1998.
[14]Mehrotra M and Baliga BJ. “The trench MOS barrier Schottky rectifier,” IEEE Inter. Electron Device Meeting Digest, p675, 1993.
[15]Yasuyuki Kawada, Takeshi Tawara, Shun-ichi Nakamura, Tae Tamori, and Noriyuki Iwamuro, “Shape Control and Roughness Reduction of SiC Trenches,” Japanese Journal of Applied Physics 48, 2009.
[16]Srikanth Mahalingam, B. Jayant Baliga,” The graded doped trench MOS Barrier Schottky rectifier: a low forward drop high voltage rectifier,” Solid-State Electronics 43, 1999.
[17]Mehrotra M, Baliga BJ. “Trench MOS barrier Schottky rectifier,” Solid State Electron., Vol. 38, No. 4, pp. 801-806, 1995.
[18]Baliga BJ, “Trends in power semiconductor devices,” IEEE Trans. Electron Devices, Vol.43, p.1717, 1996.
[19]Shimizu T, Kunori S, Kitada M, Sugai A. “100V trench MOS barrier Schottky rectifier using thick oxide layer,” Int. Symp. on Power Semiconductor Devices and ICs, p.243, 2001.
[20]V. Heera, D. Panknin, W. Skorupa, “p-Type doping of SiC by high dose Al implantation—problems and progress,” Applied Surface Science, Volume 184, Issues 1-4, 2001.
[21]Tomohisa Kato, Akimasa Kinoshita, Keisuke Wada, Takashi Nishi,Eiji Hozomi, Hiroyoshi Taniguchi, Kenji Fukuda and Hajime Okumura,” Morphology improvement of step bunching on 4H-SiC wafers by polishing technique,” Materials Science Forum Vols. 645-648, pp 763-765 , 2010.
[22]A. Koh, A. Kestle, C. Wright, S. P. Wilks, P. A. Mawby, and W. R. Bowen, "Comparative surface studies on wet and dry sacrificial thermal oxidation on silicon carbide", Appl. Surface Sci., vol. 174, pp.210 -216, 2001.
[23]Akimasa Kinoshita,Takashi Nishi,Tsutomu Yatsuo and Kenji Fukuda,” Improvement of SBD Electronic Characteristics Using SacrificialOxidation Removing the Degraded Layer from SiC Surface after High Temperature Annealing,” Mat. Sci. Forum, Vols. 556-557, pp 877-880, 2007.
[24]O.J. Guy, D. Doneddu, L. Chen, M.R. Jennings, “Improved Schottky contacts to annealed 4H-SiC using a protective carbon cap: Investigated using current voltage measurements and atomic force microscopy,” Diamond & Related Materials, Vols. 15, pp 1472–1477, 2006.
[25]Dieter K. Schroder, Semiconductor Material and Device Characterization, 3rd Edition, Willey & Sons, INC. Publication.
[26]Z. C. Fang, SiC Power Materials Device and Applications, Springer, 2004.
[27]A. Kinoshita, T .Ohyanagi, T. Yatsuo, K. Fukuda,” Fabrication of 1.2kV, 100A, 4H-SiC(0001) and (000-1) junction barrier Schottky diodes with almost same Schottky barrier height,” Mat. Sci. Forum, Volumes 645-648, 2010.
[28]A. Kinoshita, T. Nishi, T. Ohyanagi, T. Yatsuo, K. Fukuda, H. Okumura, K. Arai, “Electrical characteristics of Ti/4H-SiC silicidation Schottky barrier diode,” Mat. Sci. Forum, Volumes 600 – 603, 2009.
[29]D. Perrone, M. Naretto, S. Ferrero, L. Scaltrito, C. F. Pirri,” 4H-SiC Schottky Barrier Diodes Using Mo-, Ti- and Ni-Based Contacts,” Mat. Sci. Forum, Volumes 615 – 617, 2009.
[30]E. Bucher, S. Schulz, M. C. Lux-Steiner and P. Munz, "Work function and barrier heights of transition metal silicides," Appl. Phys. A, vol. 40, pp.71-77, 1986.
[31]L. Zhu , T. P. Chow , K. A. Jones and A. Agarwal, "Design, fabrication, and characterization of low forward drop, low leakage, 1-kV 4H-SiC JBS rectifiers,” IEEE Trans. Electron Devices, vol. 53 pp. 363, 2006.