研究生: |
張櫻靖 Ying-Ching Chang |
---|---|
論文名稱: |
以有機金屬化學氣相沈積製備的二氧化鈦薄膜之電阻轉換特性研究 Resistance switching characteristics of TiO2 films deposited by MOCVD |
指導教授: |
吳泰伯
Tai-Bor Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | 二氧化鈦 、金屬化學氣相沈積 、電阻 、轉換 、氧氣 、燈絲 |
外文關鍵詞: | TiO2, MOCVD, resistance, switching, oxygen, filament |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在白金底電極以金屬化學氣相沈積(MOCVD)製備的二氧化鈦薄膜呈現出良好的電阻轉換特性,因此可應用於非揮發性記憶體(NVM)的研究。此金屬-絕緣體-金屬(MIM)結構的上下電極皆使用白金,形成對稱電極。接著將薄膜以氮、氧氣氛作熱處理(rapid thermal Annealing,RTA),以研究其二氧化鈦薄膜的結構及成分對電性影響。另外,由於白金具有較佳的捕捉氧能力,有助於此電阻轉換機制的討論,因此在二氧化鈦薄膜中鍍製白金氧薄層,期望藉由高溫退火後,檢視其還原成的白金粒子對電性的影響。由電性量測的結果,高低阻態的穩定性與結晶性及氧化膜的計量比、氧化程度極相關。此結果也能輔助說明此過渡金屬氧化物(trasition metal oxides)的電阻轉換機制,當薄膜內含有一定程度的氧空缺和較純相的結晶,將具有穩定的電阻轉換表現。
Abstract
The TiO2 films for non-volatile memory applications were prepared on Pt bottom electrode by metal-organic chemical vapor deposition (MOCVD) method. The Pt top and bottom electrodes were made in symmetric metal-insulator-metal (MIM) structure. In order to investigate the relationships between TiO2 film structures and resistance switching behaviors, various temperatures of rapid thermal annealing under O2 and N2 atmosphere were performed. Additionally, according to the good characteristic of oxygen capture of Pt, the TiO2 films embedded with PtO thin layer was performed. The stability of high-resistance state (HRS) and low-resistance state (LRS) was dependent on the crystallinity and film composition of the TiO2 films. The results suggest that the electrical - induced resistance switching was dependent on the crystalline phases and oxygen vacancies in the TiO2 films, which affect the formation of filamentary path previously reported in binary transition metal oxide thin films exhibiting resistance switching characteristics.
Chapter 6. Reference
[1] M.I.B. Bernardi, E.J.H. Lee, P.N. Lisboa-Filho, E.R. Leite, E. Longo, J.A Varela, Materials Research, Vol. 4, No. 3, 223-6 (2001).
[2] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D.-S. Suh, J. C. Park, IEDM Tech. Dig., 587-590 (2005).
[3] B. J. Choi, D. S. Jeong, and S. K. Kim, J. Appl. Phys. 98, 033715 (2005).
[4] Christina Rohde, Byung Joon Choi, Doo Seok Jeong, Seol Choi, Jin-Shi Zhao, and Cheol Seong Hwang, Appl. Phys. Lett. 86, 262907 (2005).
[5] Byung Joon Choi, Seol Choi, Kyung Min Kim, Yong Cheol Shin, and Cheol Seong Hwang, Appl. Phys. Lett. 89, 012906 (2006).
[6] Young Ho Do, Koo Wong Jeong, Chae Ok Kim and Jin Pyo Hong, Journal of the Korean Physical Society, Vol. 48, No. 6 (2006).
[7] Masayuki Fujimoto and Hiroshi Koyama, Appl. Phys. Lett. 89, 223509 (2006).
[8] Chia-Hsun Tu and Dim-Lee Kwong, Appl. Phys. Lett. 89, 252107 (2006).
[9] Doo Seok Jeong, Byung Joon Choi and Cheol Seong Hwang, J. Appl. Phys. 100, 113724 (2006).
[10] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D.-S. Suh, J. C. Park,
Tech. Dig. - Int. Electron Devices Meet. 587 (2004).
[11] R. Waser, Nanoelectronics and Information Technology (Wiley-VCH,
Weinheim), p. 527 (2003).
[12] I. G. Baek et al., Technical Digest—International Electron Devices Meeting, San Francisco, CA, 12–14 (2004).
[13] J. Rodriguez Contreras, H. Kohlstedt, U. Poppe, R. Waser, C. Buchal, and N. A. Pertsev, Appl. Phys. Lett. vol. 83, pp. 4595-4597 (2003).
[14] D. Adler, M. S. Shur, M. Silver and S. R. Ovshinsky, J. Appl. Phys. 51, 3289 (1980).
[15] Piotr Piszczek, Monika Richert, Antoni Grodzicki, Ewa Talik, and Jan Heimann, Chem. Vap. Deposition, 399- 403 (2005).
[16] M. N. Kozicki, M. Mitkota, M. Park, M. Balakrishnan, and C. Gopalan,
Superlattices Microstruct. 34, 459 (2003).
[17] Y. C. Chen, C. F. Chen, C. T. Chen, J. Y. Yu, S. Wu, S. L. Lung, R. Liu,
and C. Y. Lu, Tech. Dig. - Int. Electron Devices Meet., 37.4.1 (2003).
[18] http://www.pcmag.com/encyclopedia_term/0,2542,t=FeRAM&i=
[19] http://en.wikipedia.org/wiki/RRAM
[20] D. R. Lamb and P. C. Rundle, Br. J. Appl. Phys. 18, 29-32 (1967).
[21] http://www.technologyreview.com/Infotech/12946/
[22] S. Q. Liu, N. J. Wu, and A. Ignatiev, Appl. Phys. Lett., Vol. 76, No. 19, (2000).
[23] Sheng T. Hsu and Tingkai Li, J. Appl. Phys. 101, 024517 (2007).
[24] 6J. F. Gibbons and W. E. Beadle, Solid-State Electron. 7, 785 (1964); W. R. Hiatt and T. W. Hickmott, Appl. Phys. Lett. 6, 106 (1965); T. W. Hickmott, J. Opt. Soc. Am. 6, 828( 1969); J. G. Simmons and R. R. Verderber, Proc. R. Soc. London, Ser. A 301, 77 (1967); I. Austin, Semiconductor Effects in Amorphous Solids (North Holland, Amsterdam, 1970), p. 477.
[25] Kyung Min Kim, Byung Joon Choi, Doo Seok Jeong, and Cheol Seong Hwang, Appl. Phys. Lett. 89, 162912 (2006).
[26] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, and I. K. Yoo, Appl. Phys. Lett., Vol. 85, No. 23, (2004).
[27] Vetrone, J.; Chung, Y-W. J. Vac. Sci. Technol. A, v.9, n. 6, p.3041-3047 (1991).
[28] M.I.B. Bernardi, E.J.H. Lee, P.N. Lisboa-Filho, E.R. Leite, Materials Research, Vol. 4, No. 3, 223-6 (2001).
[29] Heung Yong Ha, Suk Woo Nam, Tae Hoon Lim, In-Hwan Oh, Seong-Ahn Hong, Journal of Membrane Science 111, 81-92, (1996).
[30] Christina Rohde, Byung Joon Choi, Doo Seok Jeong, Seol Choi,
Jin-Shi Zhao, and Cheol Seong Hwang, Appl. Phys. Lett. 86, 262907 (2005).
[31] Soon Yong KWEON, Si Kyung CHOI, Seung Jin YEOM and Jae Sung ROH, Jpn. J. Appl. Phys. Vol. 40 (2001) Pt. 1, No. 10.