研究生: |
劉怡貞 Yi-Chen Liu |
---|---|
論文名稱: |
第四型精胺酸甲基轉化酶RMT2相互作用蛋白質之分析 Type IV Arginine Methyltransferase (RMT2) Interacting Proteins |
指導教授: |
林立元
Lih-Yuan Lin 譚鳴輝 Ming F. Tam |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 精胺酸甲基轉化酶 |
外文關鍵詞: | arginine methyltransferase 2 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
精胺酸甲基轉化酶2(Arginine methyltransferase 2, RMT2)在酵母菌中被分類為第四型的精胺酸甲基轉化酶。此蛋白質表現在大腸桿菌並藉由陰離子交換樹脂純化。由膠體過濾管柱色層分析法分析可估計此重組RMT2蛋白質分子量為47 kDa,由此可知重組RMT2蛋白質主要以單體的形式存在。將重組RMT2蛋白質加至酵母菌野生種細胞分解液中反應,並利用Superose 6膠體過濾管柱色層分析法分析,由分離出來的位置得知RMT2是以複合體的型式存在。此複合體經過DNaseⅠ、RNase A 處理後,並不會影響RMT2蛋白質在膠體過濾管柱分離出來的位置。本篇論文利用專一性的RMT2抗體交叉聯結蛋白質A-膠體來純化酵母菌野生種細胞分解液。在對照組方面,選擇使用RMT2缺乏突變種細胞分解液來做相同的實驗步驟。利用一維膠體電泳分離與RMT2有相互作用之蛋白質,經胰蛋白酶消化後之胜肽則送至基質輔助雷射脫附游離飛行時間式質譜儀(matrix-assisted laser desorption/ionization time-of-flight, MALDI-TOF)中分析。經由質譜儀分析所得的胜肽圖譜,利用MASCOT程式送至NCBI資料庫做比對,鑒別出與RMT2相互作用的蛋白質。我們找到Ssa2p,Ssb1p、Cdc19p、Pdc1p、Tef2p、Eno2p、Pgk1p、Adh1p、Fba1p、Tdh3p及Tdh2p等十一個蛋白質會和RMT2相互作用。
Type Ⅳ protein arginine methyltransferase (RMT2) from the yeast Saccharomyces cerevisiae was expressed in Escherichia coli and purified by ion-exchange chromatography. The recombinant RMT2 at is apparently in monomeric form and has a molecular mass of 47 kDa as determined by gel exclusion chromatography. The recombinant protein was incubated with cell extracts from a wild type yeast strain then further separated on the Superose 6 column. RMT2 thus recovered has an elution volume suggesting the existence of a complex. The recovered recombinant RMT2 and the associated proteins were treated with DNase I and RNase A, and then further separated on the same column. The recombinant RMT2 still has the same retention time on the Superose 6 column. The putative RMT2 complex was purified from wild type yeast extracts with RMT2 specific antibodies coupled onto protein A-agarose beads. As controls, similar experiments were carried out with extracts from a RMT2 deletion strain. Proteins that are possibly associated or interacted with RMT2 were separated with 1-D SDS-PAGE and identified by peptide mapping on a time-of-flight mass spectrometer equipped with a MALDI source. Proteins identified include: Saa2p, Ssb1p, Cdc19p, Pdc1p, Tef2p, Eno2p, Pgk1p, Adh1p, Fba1p, Tdh3p and Tdh2p.
1. Clarke, S. (1993) Protein methylation. Curr Opin Cell Biol, 5, 977-83.
2. Paik, W.K. and Kim, S. (1968) Protein methylase I. Purification and properties of the enzyme. J Biol Chem, 243, 2108-14.
3. Kakimoto, Y. and Akazawa, S. (1970) Isolation and identification of N-G,N-G- and N-G,N'-G-dimethyl-arginine, N-epsilon-mono-, di-, and trimethyllysine, and glucosylgalactosyl- and galactosyl-delta-hydroxylysine from human urine. J Biol Chem, 245, 5751-8.
4. Miranda, T.B., Miranda, M., Frankel, A. and Clarke, S. (2004) PRMT7 Is a Member of the Protein Arginine Methyltransferase Family with a Distinct Substrate Specificity. J Biol Chem, 279, 22902-7.
5. Gary, J.D. and Clarke, S. (1998) RNA and protein interactions modulated by protein arginine methylation. Prog Nucleic Acid Res Mol Biol, 61, 65-131.
6. Najbauer, J., Johnson, B.A., Young, A.L. and Aswad, D.W. (1993) Peptides with sequences similar to glycine, arginine-rich motifs in proteins interacting with RNA are efficiently recognized by methyltransferase(s) modifying arginine in numerous proteins. J Biol Chem, 268, 10501-9.
7. Chen, D., Ma, H., Hong, H., Koh, S.S., Huang, S.M., Schurter, B.T., Aswad, D.W. and Stallcup, M.R. (1999) Regulation of transcription by a protein methyltransferase. Science, 284, 2174-7.
8. Sommer, A., Moscatelli, D. and Rifkin, D.B. (1989) An amino-terminally extended and post-translationally modified form of a 25kD basic fibroblast growth factor. Biochem Biophys Res Commun, 160, 1267-74.
9. Abramovich, C., Yakobson, B., Chebath, J. and Revel, M. (1997) A protein-arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type I interferon receptor. Embo J, 16, 260-6.
10. Pintucci, G., Quarto, N. and Rifkin, D.B. (1996) Methylation of high molecular weight fibroblast growth factor-2 determines post-translational increases in molecular weight and affects its intracellular distribution. Mol Biol Cell, 7, 1249-58.
11. Lin, W.J., Gary, J.D., Yang, M.C., Clarke, S. and Herschman, H.R. (1996) The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J. Biol. Chem., 271, 15034-15044.
12. Tang, J., Gary, J.D., Clarke, S. and Herschman, H.R. (1998) PRMT 3, a type I protein arginine N-methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation. J Biol Chem, 273, 16935-45.
13. Frankel, A., Yadav, N., Lee, J., Branscombe, T.L., Clarke, S. and Bedford, M.T. (2002) The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J Biol Chem, 277, 3537-3543.
14. Paik, W.K. and Kim, S. (1967) Enzymatic methylation of protein fractions from calf thymus nuclei. Biochem Biophys Res Commun, 29, 14-20.
15. Rouault, J.P., Falette, N., Guehenneux, F., Guillot, C., Rimokh, R., Wang, Q., Berthet, C., Moyret-Lalle, C., Savatier, P., Pain, B., Shaw, P., Berger, R., Samarut, J., Magaud, J.P., Ozturk, M., Samarut, C. and Puisieux, A. (1996) Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat Genet, 14, 482-6.
16. Montagnoli, A., Guardavaccaro, D., Starace, G. and Tirone, F. (1996) Overexpression of the nerve growth factor-inducible PC3 immediate early gene is associated with growth inhibition. Cell Growth Differ, 7, 1327-36.
17. Tang, J., Frankel, A., Cook, R.J., Kim, S., Paik, W.K., Williams, K.R., Clarke, S. and Herschman, H.R. (2000) PRMT1 Is the Predominant Type I Protein Arginine Methyltransferase in Mammalian Cells. J. Biol. Chem., 275, 7723-7730.
18. Tang, J., Kao, P.N. and Herschman, H.R. (2000) Protein-arginine Methyltransferase I, the Predominant Protein-arginine Methyltransferase in Cells, Interacts with and Is Regulated by Interleukin Enhancer-binding Factor 3. J. Biol. Chem., 275, 19866-19876.
19. Frankel, A. and Clarke, S. (2000) PRMT3 is a distinct member of the protein arginine N-methyltransferase family. Conferral of substrate specificity by a zinc-finger domain. J Biol Chem, 275, 32974-82.
20. Bachand, F. and Silver, P.A. (2004) PRMT3 is a ribosomal protein methyltransferase that affects the cellular levels of ribosomal subunits. Embo J, 23, 2641-50.
21. Henry, M.F. and Silver, P.A. (1996) A novel methyltransferase (Hmt1p) modifies poly(A)+-RNA-binding proteins. Mol Cell Biol, 16, 3668-78.
22. Smith, J.J., Rucknagel, K.P., Schierhorn, A., Tang, J., Nemeth, A., Linder, M., Herschman, H.R. and Wahle, E. (1999) Unusual Sites of Arginine Methylation in Poly(A)-binding Protein II and in Vitro Methylation by Protein Arginine Methyltransferases PRMT1 and PRMT3. J Biol Chem, 274, 13229-13234.
23. Xu, C., Henry, P.A., Setya, A. and Henry, M.F. (2003) In vivo analysis of nucleolar proteins modified by the yeast arginine methyltransferase Hmt1/Rmt1p. Rna, 9, 746-59.
24. Baldwin, G.S. and Carnegie, P.R. (1971) Specific enzymic methylation of an arginine in the experimental allergic encephalomyelitis protein from human myelin. Science, 171, 579-81.
25. Hebert, M.D., Shpargel, K.B., Ospina, J.K., Tucker, K.E. and Matera, A.G. (2002) Coilin methylation regulates nuclear body formation. Dev Cell, 3, 329-37.
26. Brahms, H., Raymackers, J., Union, A., de Keyser, F., Meheus, L. and Luhrmann, R. (2000) The C-terminal RG dipeptide repeats of the spliceosomal Sm proteins D1 and D3 contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies. J Biol Chem, 275, 17122-9.
27. Brahms, H., Meheus, L., de Brabandere, V., Fischer, U. and Luhrmann, R. (2001) Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B' and the Sm-like protein LSm4, and their interaction with the SMN protein. Rna, 7, 1531-42.
28. Pollack, B., Kotenko, S., He, W., Izotova, L., Barnoski, B. and Pestka, S. (1999) The Human Homologue of the Yeast Proteins Skb1 and Hsl7p Interacts with Jak Kinases and Contains Protein Methyltransferase Activity. J. Biol. Chem., 274, 31531-31542.
29. Rho, J., Choi, S., Seong, Y.R., Cho, W.K., Kim, S.H. and Im, D.S. (2001) PRMT5, Protein Arginine Methyltransferase 5 that Forms Distinct Homo-oligomers, is a Member of the Protein Arginine Methyltransferase Family. J Biol Chem, 276, 11393-11401.
30. Lee, J.H., Cook, J.R., Pollack, B.P., Kinzy, T.G., Norris, D. and Pestka, S. (2000) Hsl7p, the yeast homologue of human JBP1, is a protein methyltransferase [In Process Citation]. Biochem Biophys Res Commun, 274, 105-11.
31. Gros, L., Delaporte, C., Frey, S., Decesse, J., de Saint-Vincent, B.R., Cavarec, L., Dubart, A., Gudkov, A.V. and Jacquemin-Sablon, A. (2003) Identification of new drug sensitivity genes using genetic suppressor elements: protein arginine N-methyltransferase mediates cell sensitivity to DNA-damaging agents. Cancer Res, 63, 164-71.
32. Zobel-Thropp, P., Gary, J.D. and Clarke, S. (1998) delta-N-methylarginine is a novel posttranslational modification of arginine residues in yeast proteins. J Biol Chem, 273, 29283-6.
33. Niewmierzycka, A. and Clarke, S. (1999) S-Adenosylmethionine-dependent methylation in Saccharomyces cerevisiae. Identification of a novel protein arginine methyltransferase. J Biol Chem, 274, 814-24.
34. Chern, M.K., Chang, K.N., Liu, L.F., Tam, T.C., Liu, Y.C., Liang, Y.L. and Tam, M.F. (2002) Yeast ribosomal protein L12 is a substrate of protein-arginine methyltransferase 2. J Biol Chem, 277, 15345-53.
35. Karas, M. and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem, 60, 2299-301.
36. Neidhardt, F.C., Bloch, P.L. and Smith, D.F. (1974) Culture medium for enterobacteria. J Bacteriol, 119, 736-47.
37. Landry, F., Lombardo, C.R. and Smith, J.W. (2000) A method for application of samples to matrix-assisted laser desorption ionization time-of-flight targets that enhances peptide detection. Anal Biochem, 279, 1-8.
38. Craig, S.P., 3rd, Yuan, L., Kuntz, D.A., McKerrow, J.H. and Wang, C.C. (1991) High level expression in Escherichia coli of soluble, enzymatically active schistosomal hypoxanthine/guanine phosphoribosyltransferase and trypanosomal ornithine decarboxylase. Proc Natl Acad Sci U S A, 88, 2500-4.
39. Weiss, V.H., McBride, A.E., Soriano, M.A., Filman, D.J., Silver, P.A. and Hogle, J.M. (2000) The structure and oligomerization of the yeast arginine methyltransferase, Hmt1. Nat Struct Biol, 7, 1165-1171.
40. Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G. and Superti-Furga, G. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415, 141-7.