簡易檢索 / 詳目顯示

研究生: 詹濬修
論文名稱: Phosphorylation of Drp1 by Cdk5 (cyclin dependent kinase 5) involves in mitochondrial dynamics regulation
Cdk5磷酸化Drp1於粒線體形態調控的探討
指導教授: 張壯榮
口試委員: 李新城
彭明德
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 47
中文關鍵詞: 粒線體型態
外文關鍵詞: Drp1, Cdk5
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 粒線體是一種動態平衡的胞器,持續進行的分裂與融合對於調控ATP的產生、細胞內鈣離子平衡與細胞計畫性死亡有重大影響。在神經退化性疾病的病人中可以發現因融合與分裂平衡改變所導致與常規不同的粒線體型態,而且粒線體過度分裂的現象也被發現和神經細胞功能不正常甚至死亡有相關。粒線體的分裂過程中Drp1扮演一個重要的角色,但是目前為止調控Drp1功能的機制還未被釐清。Cdk5一直被認為與神經細胞的生存與死亡息息相關,我們發現,在細胞內可藉由過量表現Cdk5的活化因子p35造成Drp1的Ser-616位置磷酸化,本篇論文的研究目標將以釐清Cdk5在Drp1上的轉譯後修飾對於Drp1功能的影響,藉由觀察平衡狀態下的粒線體型態進一步分析Drp1分裂粒線體的能力。實驗結果顯示在細胞中過量表現模擬磷酸化的Drp1 S616D會造成粒線體型態改變,並且促使Drp1在細胞內分佈位置改變到粒線體上。根據我們的研究結果,我們認為當Drp1 S616被Cdk5所磷酸化之後,將會調控Drp1的功能與在細胞內的位置進而影響其分裂粒線體的能力。


    Mitochondria are dynamic organelles that continually divide and fuse with one another. These processes facilitate the control of mitochondrial morphology and respond to cell metabolic demands, such as ATP production, Ca2+ homeostasis and cell apoptosis. The excessive mitochondrial division is associated with neuronal cell death and neuronal dysfunction. Moreover, abnormal mitochondrial morphology can be found in many neurological disorders. Drp1 (dynamin-related protein 1) is a critical protein that facilitates mitochondrial division. However, the regulatory mechanism remains largely unclear. Cdk5 (cyclin dependent kinase 5) is implicated in neuronal death and survival. Previously, we found that Drp1 phosphorylated by Cdk5 in vitro. The goal of this thesis is to characterize the effects of Cdk5 dependent post-translational modification on Drp1 function. Overexpression of Drp1 S616D phospho-mimetic mutant led mitochondrial dynamic balance toward fusion and promoted Drp1 translocation to mitochondria. Our results suggest that Cdk5 phosphorylation of Drp1 at Ser-616 affects Drp1 protein function and mediates translocation of Drp1 to mitochondria. We consider Cdk5 phosphorylation is one of the mitochondrial division regulatory machineries.

    口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES vii Chapter 1 Introduction 1 1.1 The structure and function of mitochondria 1 1.2 Mitochondrial dynamics and neuronal diseases 1 1.3 Mitochondrial dynamics are regulated by large GTPase proteins 2 1.4 Drp1 post-translation modification 3 1.5 Cdk5 and Drp1 Ser-616 phosphorylation 4 1.6 Goal of this study 5 Chapter 2 Material and methods 6 2.1 Site directed mutagenesis 6 2.2 Cell culture 6 2.3 Cell transfection 7 2.4 Immunobloting 7 2.4.1 Phosphatase treatment 7 2.4.2 Western-blotting 7 2.5 Immunofluorescence microscopy 8 2.5.1 Fixation 8 2.5.2 Immunostaining 9 2.6 Mitochondria isolation 9 2.7 The classification of mitochondrial morphology 9 Chapter 3 Results 10 3.1 Cdk5 phosphorylates Drp1 at Ser-616 10 3.1.1 Drp1 Ser-616 phosphorylated in SH-SY5Y cells with overexpressed Drp1WT and p35 10 3.1.2 Drp1 Ser-616 phosphorylation can also be detected in HeLa cells 11 3.2 Drp1 Ser-616 phosphorylation may alleviate mitochondrial division activity 12 3.3 Drp1 Ser-616 phosphorylation promotes Drp1 translocation to mitochondrial outer membrane 13 Chapter 4 Discussion 14

    Alexander, C., Votruba, M., Pesch, U.E., Thiselton, D.L., Mayer, S., Moore, A., Rodriguez, M., Kellner, U., Leo-Kottler, B., Auburger, G., et al. (2000). OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nature genetics 26, 211-215.
    Cereghetti, G.M., Stangherlin, A., Martins de Brito, O., Chang, C.R., Blackstone, C., Bernardi, P., and Scorrano, L. (2008). Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci U S A 105, 15803-15808.
    Chang, C.R., and Blackstone, C. (2007). Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. The Journal of biological chemistry 282, 21583-21587.
    Chang, D.T., and Reynolds, I.J. (2006). Mitochondrial trafficking and morphology in healthy and injured neurons. Progress in neurobiology 80, 241-268.
    Chen, H., Chomyn, A., and Chan, D.C. (2005). Disruption of fusion results in mitochondrial heterogeneity and dysfunction. The Journal of biological chemistry 280, 26185-26192.
    Cho, D.H., Nakamura, T., Fang, J., Cieplak, P., Godzik, A., Gu, Z., and Lipton, S.A. (2009). S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science (New York, NY 324, 102-105.
    Cipolat, S., Martins de Brito, O., Dal Zilio, B., and Scorrano, L. (2004). OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proceedings of the National Academy of Sciences of the United States of America 101, 15927-15932.
    Deng, H., Dodson, M.W., Huang, H., and Guo, M. (2008). The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 105, 14503-14508.
    Detmer, S.A., and Chan, D.C. (2007). Functions and dysfunctions of mitochondrial dynamics. Nature reviews Molecular cell biology 8, 870-879.
    Hatefi, Y. (1985). The mitochondrial electron transport and oxidative phosphorylation system. Annual review of biochemistry 54, 1015-1069.
    Humbert, S., Dhavan, R., and Tsai, L. (2000). p39 activates cdk5 in neurons, and is associated with the actin cytoskeleton. Journal of cell science 113 ( Pt 6), 975-983.
    Manczak, M., and Reddy, P.H. (2012). Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer's disease neurons: implications for mitochondrial dysfunction and neuronal damage. Human molecular genetics 21, 2538-2547.
    Meuer, K., Suppanz, I.E., Lingor, P., Planchamp, V., Goricke, B., Fichtner, L., Braus, G.H., Dietz, G.P., Jakobs, S., Bahr, M., et al. (2007). Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell Death Differ 14, 651-661.
    Miyagishima, S.Y., Nozaki, H., Nishida, K., Matsuzaki, M., and Kuroiwa, T. (2004). Two types of FtsZ proteins in mitochondria and red-lineage chloroplasts: the duplication of FtsZ is implicated in endosymbiosis. Journal of molecular evolution 58, 291-303.
    Nikolic, M., Chou, M.M., Lu, W., Mayer, B.J., and Tsai, L.H. (1998). The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity. Nature 395, 194-198.
    Nunnari, J., and Suomalainen, A. (2012). Mitochondria: in sickness and in health. Cell 148, 1145-1159.
    Patrick, G.N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P., and Tsai, L.H. (1999). Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615-622.
    Smirnova, E., Griparic, L., Shurland, D.L., and van der Bliek, A.M. (2001). Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Molecular biology of the cell 12, 2245-2256.
    Strack, S., and Cribbs, J.T. (2012). Allosteric modulation of drp1 mechanoenzyme assembly and mitochondrial fission by the variable domain. The Journal of biological chemistry 287, 10990-11001.
    Taguchi, N., Ishihara, N., Jofuku, A., Oka, T., and Mihara, K. (2007). Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. The Journal of biological chemistry 282, 11521-11529.
    Tan, T.C., Valova, V.A., Malladi, C.S., Graham, M.E., Berven, L.A., Jupp, O.J., Hansra, G., McClure, S.J., Sarcevic, B., Boadle, R.A., et al. (2003). Cdk5 is essential for synaptic vesicle endocytosis. Nature cell biology 5, 701-710.
    Tsai, L.H., Delalle, I., Caviness, V.S., Jr., Chae, T., and Harlow, E. (1994). p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371, 419-423.
    Varadi, A., Johnson-Cadwell, L.I., Cirulli, V., Yoon, Y., Allan, V.J., and Rutter, G.A. (2004). Cytoplasmic dynein regulates the subcellular distribution of mitochondria by controlling the recruitment of the fission factor dynamin-related protein-1. Journal of cell science 117, 4389-4400.
    Wang, X., and Schwarz, T.L. (2009). The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell 136, 163-174.
    Yaffe, M.P. (1999). Dynamic mitochondria. Nature cell biology 1, E149-150.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE