簡易檢索 / 詳目顯示

研究生: 盧琮元
Lu, Tsung-Yuan
論文名稱: 利用NO及N2O氧化後退火改善4H-SiC低壓三閘極金氧半場效電晶體特性及可靠度之研究
Study on Performance and Reliability of 4H-SiC Low Voltage Tri-Gate MOSFET with NO and N2O Post Oxidation Annealing
指導教授: 黃智方
Huang, Chih-Fang
口試委員: 吳添立
Wu, Tian-Li
趙得勝
Chao, Der-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 62
中文關鍵詞: 三閘極金氧半場效電晶體碳化矽氧化後退火可靠度
外文關鍵詞: NO-anneling, sub-threshold-slope
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統(0001)面的低壓SiC MOSFETs元件因為SiC/SiO2介面的高Dit,通道遷移率受到了限制,為了改善這個問題,本實驗提出了利用(112̅0)面側壁作為部分通道的tri-gate結構,並且分別使用NO、N2O進行氧化後退火降低Dit並比較他們帶來的影響。
    本論文使用N型MOS capacitors、平面型MOSFETs、tri-gate MOSFETs來評估元件的特性以及氧化後退火的比較。跟N2O製程比起來NO製程(0001)面在距離傳導帶0.1 eV處的Dit值下降了約40 %,而且sub-threshold slope(S.S.)降低了20 %左右。Tri-gate結構的S.S.相比於平面結構也降低了約22 %,汲極飽和電流也大約是平面結構的兩倍。最後是初步的討論元件閘極氧化層可靠度,在適當的Vg ,max下, NO製程的tri-gate MOSFET不僅有著最佳的電流特性,而且不論是PBTI、NBTI都有著最小的ΔVTH,然而,在動態導通電阻的穩定性有觀察到一些問題。


    Due to the high Dit at the SiC/SiO2 interface, the channel mobility of conventional (0001) face low-voltage SiC MOSFETs is limited. In order to improve this issue, this work proposes a tri-gate structure which include the (112̅0) face sidewall as part of the channel. In addition, NO and N2O are used for post-oxidation annealing to reduce the Dit and their effects are compared.
    N-type MOS capacitors, planar MOSFETs, and tri-gate MOSFETs are used to evaluate the characteristics of devices and compare them with different post-oxidation annealing. Compared to the N2O process, the Dit¬ value for (0001) face of the NO process at E-EC=0.1 eV is reduced by about 40%, and the sub-threshold slope (S.S.) is reduced by about 20 %. Compared to the planar structure, the S.S. of tri-gate structure is also reduced by about 22 %, and the drain saturation current is about twice as large as the planar structure. Finally, the preliminary reliability of the gate oxide is discussed. Tri-gate MOSFET with NO process not only has the best current characteristics, but also has the smallest ΔVTH for both PBTI and NBTI under a reasonable Vg,max. However, some dynamic Ron issue is observed.

    中文摘要 i Abstract ii 目錄 iii 圖目錄 vi 表目錄 ix 第一章 序論 1 1.1 前言 1 1.1.1 碳化矽材料特性介紹 1 1.1.2 碳化矽與氧化層介面特性 3 1.2 文獻回顧 4 1.2.1 碳化矽與氧化層介面特性之改善 4 1.2.2 碳化矽(112̅0)面與通道遷移率 5 1.2.3 垂直型功率Tri-gate MOSFET 7 1.3 研究動機 8 1.4 論文大綱 9 第二章 元件設計與實驗介紹 10 2.1 元件介紹 10 2.1.1 垂直型電容器(MOS capacitors) 10 2.1.2 平面型金氧半場效電晶體(Planar MOSFETs) 11 2.1.3 三閘極型金氧半場效電晶體(Tri-gate MOSFETs) 12 2.2 NO及N2O介面氮化 13 2.3 元件基本電性量測 15 2.3.1 電容-電壓特性量測(C-V) 15 2.3.2 C-V量測與介面能態密度 17 2.3.3 MOSFETs元件順向導通特性 20 2.4 元件可靠度測試 22 2.4.1 SiC元件閘極氧化層可靠度 22 2.4.2 BTI對元件可靠度的影響 22 2.4.3 電荷汲引技術(Charge pumping) 23 第三章 結構及退火氣體對元件的影響 26 3.1 垂直型電容器量測之結果與分析 26 3.1.1 不同退火製程對氧化層影響 26 3.1.2 SiC/SiO2介面能態密度(Dit)結果討論 27 3.2 多閘極型與水平型金氧半場效電晶體比較及討論 30 3.2.1 順向導通電流 30 3.2.2 溫度效應對順向導通特性影響 36 3.2.3 汲極崩潰電壓 39 第四章 元件可靠度 40 4.1 BTI的結果分析 40 4.2 電荷汲取技術 44 4.2.1 電荷汲取電流 44 4.2.2 次臨界遲滯(Subthreshold hysteresis) 45 4.2.3 量測溫度與電荷汲取技術 50 4.3 動態導通電阻穩定性(Dynamic Ron) 52 第五章 結論及未來展望 55 參考文獻 57

    [1] T. Kimoto, "Material science and device physics in SiC technology for high-voltage power devices," Japanese Journal of Applied Physics, vol. 54, no. 4, p. 040103, 2015.
    [2] A. R. Powell and L. B. Rowland, "SiC materials-progress, status, and potential roadblocks," Proceedings of the IEEE, vol. 90, no. 6, pp. 942-955, 2002.
    [3] C.-M. Zetterling, Process technology for silicon carbide devices (no. 2). IET, 2002.
    [4] T. Kimoto and J. A. Cooper, Fundamentals of silicon carbide technology: growth, characterization, devices and applications. John Wiley & Sons, 2014.
    [5] H.-f. Li, S. Dimitrijev, H. B. Harrison, and D. Sweatman, "Interfacial characteristics of N 2 O and NO nitrided SiO 2 grown on SiC by rapid thermal processing," Applied physics letters, vol. 70, no. 15, pp. 2028-2030, 1997.
    [6] G. Chung et al., "Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide," IEEE Electron Device Letters, vol. 22, no. 4, pp. 176-178, 2001.
    [7] T. Kimoto, Y. Kanzaki, M. Noborio, H. Kawano, and H. Matsunami, "Interface properties of metal–oxide–semiconductor structures on 4H-SiC {0001} and (1120) formed by N2O oxidation," Japanese journal of applied physics, vol. 44, no. 3R, p. 1213, 2005.
    [8] H. Yano, T. Hirao, T. Kimoto, H. Matsunami, K. Asano, and Y. Sugawara, "High channel mobility in inversion layers of 4H-SiC MOSFETs by utilizing (112~ 0) face," IEEE Electron Device Letters, vol. 20, no. 12, pp. 611-613, 1999.
    [9] H. Yano, T. Kimoto, and H. Matsunami, "Shallow states at SiO 2/4 H-SiC interface on (1120) and (0001) faces," Applied physics letters, vol. 81, no. 2, pp. 301-303, 2002.
    [10] R. Siemieniec et al., "A SiC trench MOSFET concept offering improved channel mobility and high reliability," in 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe), 2017: IEEE, pp. P. 1-P. 13.
    [11] R. P. Ramamurthy, N. Islam, M. Sampath, D. T. Morisette, and J. A. Cooper, "The tri-gate MOSFET: a new vertical power transistor in 4H-SiC," IEEE Electron Device Letters, vol. 42, no. 1, pp. 90-93, 2020.
    [12] Y. Nanen, M. Kato, J. Suda, and T. Kimoto, "Effects of nitridation on 4H-SiC MOSFETs fabricated on various crystal faces," IEEE Transactions on Electron Devices, vol. 60, no. 3, pp. 1260-1262, 2013.
    [13] P. Fiorenza et al., "Interfacial electrical and chemical properties of deposited SiO2 layers in lateral implanted 4H-SiC MOSFETs subjected to different nitridations," Applied Surface Science, vol. 557, p. 149752, 2021.
    [14] D. K. Schroder, Semiconductor material and device characterization. John Wiley & Sons, 2015.
    [15] A. Wadsworth, Ed. The Parametric Measurement Handbook 4th Edition. IEEE, 2018.
    [16] J. Cooper, JA, "Advances in SiC MOS technology," physica status solidi (a), vol. 162, no. 1, pp. 305-320, 1997.
    [17] D. A. Neamen, Semiconductor physics and devices: basic principles. McGraw-hill, 2003.
    [18] A. V. Penumatcha, S. Swandono, and J. A. Cooper, "Limitations of the High-Low C-V Technique for MOS Interfaces With Large Time Constant Dispersion," IEEE transactions on electron devices, vol. 60, no. 3, pp. 923-926, 2013.
    [19] V. Afanas’ ev, M. Bassler, G. Pensl, M. Schulz, and E. Stein von Kamienski, "Band offsets and electronic structure of SiC/SiO2 interfaces," Journal of Applied Physics, vol. 79, no. 6, pp. 3108-3114, 1996.
    [20] R. Degraeve, B. Kaczer, and G. Groeseneken, "Degradation and breakdown in thin oxide layers: mechanisms, models and reliability prediction," Microelectronics Reliability, vol. 39, no. 10, pp. 1445-1460, 1999.
    [21] J. Berens et al., "Similarities and differences of BTI in SiC and Si power MOSFETs," in 2020 IEEE International Reliability Physics Symposium (IRPS), 2020: IEEE, pp. 1-7.
    [22] A. J. Lelis et al., "Time dependence of bias-stress-induced SiC MOSFET threshold-voltage instability measurements," IEEE transactions on Electron Devices, vol. 55, no. 8, pp. 1835-1840, 2008.
    [23] A. J. Lelis, R. Green, D. B. Habersat, and M. El, "Basic mechanisms of threshold-voltage instability and implications for reliability testing of SiC MOSFETs," IEEE Transactions on Electron Devices, vol. 62, no. 2, pp. 316-323, 2014.
    [24] A. Salinaro et al., "Charge pumping measurements on differently passivated lateral 4H-SiC MOSFETs," IEEE Transactions on Electron Devices, vol. 62, no. 1, pp. 155-163, 2014.
    [25] M. Noborio, J. Suda, S. Beljakowa, M. Krieger, and T. Kimoto, "4H‐SiC MISFETs with nitrogen‐containing insulators," physica status solidi (a), vol. 206, no. 10, pp. 2374-2390, 2009.
    [26] H. Yoshioka, J. Senzaki, A. Shimozato, Y. Tanaka, and H. Okumura, "N-channel field-effect mobility inversely proportional to the interface state density at the conduction band edges of SiO2/4H-SiC interfaces," AIP Advances, vol. 5, no. 1, p. 017109, 2015.
    [27] K. Kutsuki et al., "Experimental investigation and modeling of inversion carrier effective mobility in 4H-SiC trench MOSFETs," Solid-State Electronics, vol. 157, pp. 12-19, 2019.
    [28] S. Harada et al., "Relationship between channel mobility and interface state density in SiC metal–oxide–semiconductor field-effect transistor," Journal of applied physics, vol. 91, no. 3, pp. 1568-1571, 2002.
    [29] M. Noguchi, A. Koyama, T. Iwamatsu, H. Amishiro, H. Watanabe, and N. Miura, "Gate oxide instability and lifetime in SiC MOSFETs under a wide range of positive electric field stress," in 2020 IEEE International Electron Devices Meeting (IEDM), 2020: IEEE, pp. 23.4. 1-23.4. 4.
    [30] C.-T. Yen et al., "Negative bias temperature instability of SiC MOSFET induced by interface trap assisted hole trapping," Applied Physics Letters, vol. 108, no. 1, p. 012106, 2016.
    [31] M. Noguchi, A. Koyama, T. Iwamatsu, H. Watanabe, and N. Miura, "Gate Oxide Instability against a Wide Range of Negative Electric Field Stress of SiC MOSFETs," in 2021 IEEE International Electron Devices Meeting (IEDM), 2021: IEEE, pp. 36.3. 1-36.3. 4.
    [32] T. Kimoto, H. Yoshioka, and T. Nakamura, "Physics of SiC MOS interface and development of trench MOSFETs," in The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications, 2013: IEEE, pp. 135-138.
    [33] D. Peters, T. Aichinger, T. Basler, G. Rescher, K. Puschkarsky, and H. Reisinger, "Investigation of threshold voltage stability of SiC MOSFETs," in 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2018: IEEE, pp. 40-43.
    [34] G. Rescher, G. Pobegen, T. Aichinger, and T. Grasser, "On the subthreshold drain current sweep hysteresis of 4H-SiC nMOSFETs," in 2016 IEEE International Electron Devices Meeting (IEDM), 2016: IEEE, pp. 10.8. 1-10.8. 4.
    [35] M. Meneghini et al., "Reliability and failure analysis in power GaN-HEMTs: An overview," in 2017 IEEE International Reliability Physics Symposium (IRPS), 2017: IEEE, pp. 3B-2.1-3B-2.8.

    QR CODE