簡易檢索 / 詳目顯示

研究生: 陳嘉哲
Chen, Chia Che
論文名稱: 圓管與平面結構複合材料對於鑽孔所致脫層之影響
The Effects of Tubular and Planar Composite Structures on Drilling-Induced Delamination
指導教授: 賀陳弘
Hocheng, Hong
口試委員: 洪景華
林士傑
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 66
中文關鍵詞: 複合材料鑽孔脫層有限單元模擬臨界軸向推力
外文關鍵詞: Composite structure, Drilling, Delamination, Finite element simulation, Critical thrust force
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 複合材料由於許多優異的特性已被廣泛應用於各個領域中,尤其是許多高規格的產品更是常常會使用到複合材料,疊層狀的複合材料是ㄧ種常見的複合材料結構之一,結構由多層的預浸材疊層堆疊而成,這種結構的優點是材料特性可以透過改變疊層方式來做改變,具有較大的彈性,缺點則是加工的時候容易產生脫層現象而導致加工品質受到影響。
    平板與圓管結構的複合材料在鑽孔時,由於幾何形狀不同,導致鑽孔所造成的脫層嚴重程度也不相同,脫層的嚴重程度一般來說主要與軸向推力大小有關,找出結構開始脫層的軸向推力值,也就是臨界軸向推力,就能夠預測結構在怎樣的鑽削條件下會產生脫層。因此在本研究中利用有限單元模擬的方式,藉由破裂分析分別找出平板結構與圓管結構的臨界軸向推力,發現圓管的臨界軸向推力略小於平板。得到模擬值後,利用實驗的方式將模擬值與實際值進行比較,以驗證模擬結果的正確性及實用性,最後發現模擬值與實驗結果相當接近,證明以有限單元模擬的方式來預測臨界軸向推力是確實可行的。


    Owing to remarkable properties, composite materials are generally used in varieties of industries especially for high value products. Laminated composites are commonly used which are composed of several prepreg plies. This kind of structure has an advantage of tailoring material properties easily by changing the way of lamination. But the trade-off is that delamination tends to occur between plies.
    There is a difference on degree of drilling-induced delamination between planar structure and tubular structure. In general, the magnitude of thrust force is the most determining factor on drilling-induced delamination. If one can obtain the critical thrust force beyond which fracture occurs, it is possible to predict the onset of delamination. In view of this, a finite element simulation is conducted to determine the value of critical thrust force for each structure. It is found that the critical thrust force of tubular structure is slightly lower than that of planar structure. After that, experiments are made to examine the accuracy and applicability of the simulations .The values obtained from simulation and experiment are very close. As a result, it is verified that critical thrust force determined by simulation is feasible.

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 4 第二章 文獻回顧 6 2.1複合材料鑽孔 6 2.2鑽孔引發之脫層現象 8 2.3脫層程度評估準則 9 2.4影響脫層因素 10 2.5複合材料平板鑽孔模擬相關文獻 11 第三章 有限單元模型建立與設定 19 3.1分析軟體 19 3.2模型建立 19 3.3材料常數與邊界條件設定 21 3.4網格建立 22 3.5網格收斂性分析 27 第四章 模擬分析結果 28 4.1以局部模型取代整體模型 28 4.1.1整體模型的初步應力分析 28 4.1.2使用局部模型之可行性驗證 31 4.2模型圓孔處修正 32 4.3破裂分析 35 4.3.1建立破裂模型 35 4.3.2接觸單元之雙線性特性 36 4.3.3臨界軸向推力 38 4.3.4模擬結果 38 第五章 實驗器材與方法 41 5.1實驗器材 41 5.1.1碳纖維平板與圓管 41 5.1.2平板與圓管之夾具 42 5.1.3鑽頭 44 5.1.4CNC工具機 45 5.1.5切削動力計 46 5.1.6非破壞性檢測 48 5.2實驗參數及鑽孔位置設定 49 5.3實驗步驟 51 第六章 實驗結果與討論 52 6.1鑽孔實驗結果 52 6.2實驗結果比較與討論 60 第七章 結論 63 參考文獻 64

    [1] 葉孟考,黃婉萱,宋棋舜,呂俊麟(2009),複合材料力學近況簡介
    [2] Liu, D., Tang, Y., & Cong, W. L. (2012). A review of mechanical drilling for composite laminates. Composite Structures, 94(4), 1265-1279.
    [3] Faraz, A., Biermann, D., & Weinert, K. (2009). Cutting edge rounding: An innovative tool wear criterion in drilling CFRP composite laminates. International Journal of Machine Tools and Manufacture, 49(15), 1185-1196.
    [4] Davim, J. P., Reis, P., & Antonio, C. C. (2004). Experimental study of drilling glass fiber reinforced plastics (GFRP) manufactured by hand lay-up. Composites Science and Technology, 64(2), 289-297.
    [5] Davim, J. P., & Reis, P. (2003). Drilling carbon fiber reinforced plastics manufactured by autoclave—experimental and statistical study. Materials & design, 24(5), 315-324.
    [6] Davim, J. P., & Reis, P. (2003). Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments. Composite structures, 59(4), 481-487.
    [7] Sardinas, R. Q., Reis, P., & Davim, J. P. (2006). Multi-objective optimization of cutting parameters for drilling laminate composite materials by using genetic algorithms. Composites Science and Technology, 66(15), 3083-3088.
    [8] Kilickap, E. (2010). Optimization of cutting parameters on delamination based on Taguchi method during drilling of GFRP composite. Expert Systems with Applications, 37(8), 6116-6122.
    [9] Khashaba, U. A. (2004). Delamination in drilling GFR-thermoset composites. Composite Structures, 63(3), 313-327.
    [10] Khashaba, U. A., El-Sonbaty, I. A., Selmy, A. I., & Megahed, A. A. (2010). Machinability analysis in drilling woven GFR/epoxy composites: Part I–Effect of machining parameters. Composites Part A: Applied Science and Manufacturing, 41(3), 391-400.
    [11] Gaitonde, V. N., Karnik, S. R., Rubio, J. C., Correia, A. E., Abrao, A. M., & Davim, J. P. (2008). Analysis of parametric influence on delamination in high-speed drilling of carbon fiber reinforced plastic composites. Journal of materials processing technology, 203(1), 431-438.
    [12] Karnik, S. R., Gaitonde, V. N., Rubio, J. C., Correia, A. E., Abrão, A. M., & Davim, J. P. (2008). Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model. Materials & Design, 29(9), 1768-1776.
    [13] Rubio, J. C., Abrao, A. M., Faria, P. E., Correia, A. E., & Davim, J. P. (2008). Effects of high speed in the drilling of glass fibre reinforced plastic: evaluation of the delamination factor. International Journal of Machine Tools and Manufacture, 48(6), 715-720.
    [14] Rawat, S., & Attia, H. (2009). Characterization of the dry high speed drilling process of woven composites using Machinability Maps approach. CIRP Annals-Manufacturing Technology, 58(1), 105-108.
    [15] Tsao, C. C., & Hocheng, H. (2005). Computerized tomography and C-Scan for measuring delamination in the drilling of composite materials using various drills. International Journal of Machine Tools and Manufacture, 45(11), 1282-1287.
    [16] Arul, S., Vijayaraghavan, L., Malhotra, S. K., & Krishnamurthy, R. (2006). The effect of vibratory drilling on hole quality in polymeric composites. International Journal of Machine Tools and Manufacture, 46(3), 252-259.
    [17] Babu, P. R., & Pradhan, B. (2007). Effect of damage levels and curing stresses on delamination growth behaviour emanating from circular holes in laminated FRP composites. Composites Part A: Applied Science and Manufacturing, 38(12), 2412-2421.
    [18] Zitoune, R., & Collombet, F. (2007). Numerical prediction of the thrust force responsible of delamination during the drilling of the long-fibre composite structures. Composites Part A: Applied Science and Manufacturing, 38(3), 858-866.
    [19] Zitoune, R., Collombet, F., Lachaud, F., Piquet, R., & Pasquet, P. (2005). Experiment–calculation comparison of the cutting conditions representative of the long fiber composite drilling phase. Composites Science and Technology, 65(3), 455-466.
    [20] 陳孝宗(2015),以管內結冰抑制圓管複合材料鑽孔脫層之探討,國立清華大學動力機械工程學系碩士論文
    [21] Yamanaka, T., Ghiasi, H., Heidari-Rarani, M., Lessard, L., Feret, V., & Hubert, P. (2015). Multiscale finite element analysis of mode I delamination growth in a fabric composite. Composite Structures, 133, 157-165.
    [22] Gay, D. (2014). Composite materials: design and applications. CRC press.
    [23] Lee, S. C., Jeong, S. T., Park, J. N., Kim, S. J., & Cho, G. J. (2008). Study on drilling characteristics and mechanical properties of CFRP composites. Acta Mechanica Solida Sinica, 21(4), 364-368.
    [24] Tsao, C. C. (2008). Prediction of thrust force of step drill in drilling composite material by Taguchi method and radial basis function network. The International Journal of Advanced Manufacturing Technology, 36(1-2), 11-18.
    [25] Fernandes, M., & Cook, C. (2006). Drilling of carbon composites using a one shot drill bit. Part I: Five stage representation of drilling and factors affecting maximum force and torque. International Journal of Machine Tools and Manufacture, 46(1), 70-75.
    [26] ANSYS Workbench Help 15.0 Version

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE