簡易檢索 / 詳目顯示

研究生: 吳東信
Tung-Hsin Wu
論文名稱: 正子/電腦斷層造影劑量與衰減之研究
Dose and Attenuation Studies in PET/CT Imaging
指導教授: 朱鐵吉
Tieh-Chi Chu
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2006
畢業學年度: 95
語文別: 中文
論文頁數: 82
中文關鍵詞: 正子/電腦斷層造影衰減校正診斷資訊輻射劑量熱發光計量劑
外文關鍵詞: PET/CT, attenuation correction, diagnostic information, radiation dosimetry, thermoluminescent dosimeters
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,正子/電腦斷層攝影系統(PET-CT dual-modality)已在國內各大醫學中心蔚為風潮,將PET與CT結合在單一掃描系統中,不但可以同時獲取功能性資訊(functional information)與解剖影像(anatomic image),且能在一次的掃描中將此二種影像融合呈現(image fusion)。此外,基於CT的X光球管具備高光子通量率(high photon flux)的特性(約為傳統鍺-68穿透式掃描的104倍),利用CT影像來作PET 射出式掃描影像(emission scan)的衰減校正(attenuation correction)會比使用傳統穿透式掃描鍺-68(germanium-68)有更短的掃描時間及提供更佳的影像解析(spatial resolution),如此不但可以提昇診斷價值(diagnostic value),更可增加就診人數(patient throughput),就現行臨床的PET/CT診斷流程而言,CT穿透掃描(CT transmission scan)幾乎已全面取代傳統鍺-68衰減校正的功能。然而,高品質的CT影像雖能提供較佳的影像品質與診斷資訊(diagnostic information),但相對帶給病人的卻是較高的輻射劑量,尤其是對大範圍的全身性掃描來說,CT的掃描範圍涵蓋顱頂至骨盆腔,這樣大範圍的全身性掃描模式是更是傳統CT診斷中罕見的。完整的劑量評估對接受正子造影之病患是有其必要性的,在不影響臨床造影程序與保有原有掃描速度的前題下,如何得到最多的診斷資訊並又能大幅降低病患輻射劑量是本研究最重要的課題,其研究結果將為此目標奠定重要基礎,以減少一般民眾對正子造影檢查高風險、高輻射劑量的過度疑慮,預期將能為推廣正子造影檢查帶來很大的助益。
    在此研究中我們將探討幾個重要的議題:(1)比較CT和傳統鍺-68作衰減校正掃描時病人在不同掃描模式下,如腦部、心臟及全身性掃描所接受的輻射劑量,(2)在不影響現行的臨床造影的原則下,如何在影像品質與輻射劑量間取得一平衡點,以求得最佳化的造影準則(optimizing protocols),都將在本研究中探討,(3)如何有效的降低輻射劑量,並提昇現行PET/CT系統的診斷優勢?以及預期能夠降低多少輻射劑量?將是本研究另一重要的課題。透過本研究的進行,除了可建立一套應用在正子造影上輻射的劑量測定術(radiation dosimetry)與風險評估(radiation risk)的參考標準外,更可以幫助擴展正子掃描的應用層面,以減少因劑量約束所帶來的應用限制。


    In the current PET/CT in-line system, high quality CT images not only provide better diagnostic values for anatomic delineation but also offer a shorter scanning time for the transmission scan. However, under standard operating conditions, the photon flux from a CT scan is greater than that from a typical PET transmission measurement obtained with germanium-68 rod sources by a factor of at least 104. This approach would potentially introduce more radiation burden owing to the higher radiation exposure. This situation is particularly severe for a whole-body protocol in which CT scans are obtained from the head to the pelvic region, though this is a relatively rare practice in typical diagnostic CT procedures. Ideal optimal operation protocols for routine PET/CT imaging must take diagnostic values, image quality, radiation doses, scanning time and practicability into consideration, and the question of how to reconcile all these factors is at present a hotly debated topic in nuclear medicine. By studying the potential effects on the corrected emission images obtained using various CT-based attenuation correction parameter settings, we can get more understanding of the relationship between image quality and radiation dose for different PET/CT diagnostic imaging purposes.
    The objectives of this study were: (1) to measure the radiation doses by the same technique during germanium-based and CT-based transmission scanning and to compare the doses received by brain, cardiac and whole-body scans, (2) to propose the imaging parameters that could best reduce these radiation doses to levels that permit scanning with all the advantages of current PET/CT imaging and yet without significantly degrading the accuracy of the diagnostic information that such scans provide, and (3) to estimate the expected decrease in dose. In order to improve the current clinical protocols, a new operational protocol is suggested based on the results of our present study. It is our belief that the revised PET/CT imaging protocol is able to maximize diagnostic information and minimize radiation risks.

    Abstract ............................................. i 摘要 ............................................iii 致謝 ............................................. v Contents..............................................vii List of Figures........................................ix List of Tables ......................................xiii Chapter 1. PET/CT systems........................1 1.1. Introduction...................................1 1.2. Motivation.....................................3 1.3. Protocols......................................5 1.4. Radionuclide Transmission Scanning.............7 1.5. X-Ray Transmission Scanning...................10 Chapter 2. Radiation Exposure during Transmission Measurements...........................................26 2.1. Introduction..................................26 2.2. Materials and methods.........................28 2.2.1. Transmission protocol.........................28 2.2.2. Thermoluminescent dosimeters..................29 2.2.3. Evaluation of doses...........................31 2.3. Results.......................................32 2.3.1. Radiation dosimetry...........................32 2.3.2. Effective dose in one PET examination.........33 2.4. Discussion......................................34 2.4.1. GeTM versus CTTM..............................34 2.4.2. Implications for whole-body GeTM..............35 2.4.3. Clinical practicability versus low-dose CTTM..36 Chapter 3. A PET/CT Acquisition Protocol for CT Radiation Dose Optimization ............................43 3.1. Introduction..................................43 3.2. Materials and methods.........................45 3.2.1. The PET/CT Scanner............................45 3.2.2. Radiation Dose and Image effects..............46 3.2.3. Approach of CT noise measurement..............48 3.3. Results.......................................50 3.3.1. Effective Dose in One PET/CT Examination......50 3.3.2. Image Effect of Ultra-low Dose CT Acquisition.51 3.4.Discussion....................................... 53 3.4.1. Radiation Dose Considerations............... 53 3.4.2. Ultra-low Dose CT........................... 55 3.4.3. Diagnostic Information...................... 56 3.4.4. The Revised PET/CT Acquisition Protocol..... 57 Chapter 4. Conclusions........................ 66 References ................................... 86 Appendix I. Curriculum Vitae......................... 92 Appendix II. Publication List (1999~2005)............ 92 Appendix III. Conference Abstract List (1999~2005)... 92

    Almeida P., Bendriem B., de Dreuille O., Peltier A., Perrot C., Brulon V.(1998). Dosimetry of transmission measurements in nuclear medicine: a study using anthropomorphic phantoms and thermoluminescent dosimeters. Eur J Nucl Med. 25:1435–1441.
    Antoch, G., Freudenberg, L. S., Debatin, J. F., Mueller, S. P., Beyer, T., Bockisch, A., and Stattaus, J. (2002). A radiologist's perspective on dual-modality PET/CT: Optimized CT scanning protocols and their effect on PET quality. J. Nucl. Med. 43: 307P.
    Bailey DL.(1998). Transmission scanning in emission tomography. Eur J Nucl Med. 25:774–787.
    Bailey, D. L., Young, H., Bloomfield, P. M., Meikie, S. R., Glass D., Meyers, M. J., Spinks, T. J., Watson, C. C., Luk, P., Peters, A. M., and Jones, T. (1997). ECAT ART- continuously rotating PET camera: Performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department. Eur. J. Nacl. Med. 24:6-15.
    Bengel FM., Ziegler SI., Avril N., Weber W., Laubenbacher C., Schwaiger M.(1997). Whole body positron emission tomography in clinical oncology: comparison between attenuation corrected and uncorrected images. Eur. J. Nucl. Med. 24: 1091-1098.
    Beyer T., Antoch G., Müller S., Egelhof T., Freudenberg LS., Debatin J., Bockisch A.(2004). Acquisition Protocol Considerations for Combined PET/CT Imaging. J. Nucl. Med. 45:25S-35S.
    Beyer, T., Townsend, D. W., Brun, T., Kinahan, P. E., Charron, M., Roddy, R., Jerin, J., Young, J., Byars, L., and Nutt, R. (2000). A combined PET/CT scanner for clinical oncology. J. Nucl. Med. 41(8): 1369-1379.
    Blankespoor, S. C., Wu, X., Kaiki, K., Brown, J. K., Tang, H. R., Cann, C. E., and Hasegawa, B. H. (1996). Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: Myocardial perfusion assessment. IEEE Trans. Nucl. Sci. 43(4): 2263-2274.
    Burger C., Goerres G., Schoenes S., Buck A., Lonn AHR., von Schulthess GK.(2002). PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511keV attenuation coefficients. Eur J Nucl Med. 29:922–927.
    Burger, C., Schoenes, S., Goerres, G., Buck, A., and Von Schulthess, G. K. (2001). Transformation of CT-values into 511 keV attenuation coefficients for usage in PET attenuation correction. J. Nucl. Med. 42: 57P.
    Cao Z., Tsui BM.(1992). Performance characteristics of transmission imaging using a uniform sheet source with parallel hole collimaton. Med Phys. 19: 1205–1212.
    Carney, J., Beyer, T., Brasse, D., Yap, J. T., and Townsend, D. W. (2002). Clinical PET/CT scanning using oral CT contrast agents. J. Nucl. Med. 43:57P.
    Charron, M., Beyer, T., Bohnen, N. N., Kinahan, P. E., Dachille, M., Jerin,. J., Nutt, R., Meltzer, C. C., Villemagne, V., and Townsend, D. W. (2000). Image analysis in patients with cancer studied with a combined PET and CT scanner. Clin. Nucl. Med. 25(11): 905-910.

    Cohade, C., Osman, M., Marshall, L., and Wahl, R. L. (2002). Metallic object artifacts on PET-CT: Clinical and phantom studies. J. Nucl. Med. 43:308P.
    Cohnen M., Poll LW., Puettmann C., Ewen K., Saleh A., Möedder U(2003). Effective doses in standard protocols for multi-slice CT scanning. Eur Radiol. 13: 1148-1153.
    Dahiborn, M., and Hoffman, E. J. (1987). Problems in signal-to-noise ratio for attenuation correction in high resolution PET. IEEE Trans. Nucl. Sci. 34:288-293.
    Deloar HM., Fujiwara T., Shidahara M., et al.(1998). Estimation of absorbed dose for 2-[F-18]fluoro-2-deoxy-D-glucose using whole-body positron emission tomography and magnetic resonance imaging. Eur J Nucl Med. 25:565–574.
    Deloar HM., Fujiwara T., Shidahara M., nakamura T., Yamadera A., Itoh M.(1999). Internal absorbed dose estimation by a TLD method for 18F-FDG and comparison with dose estimates from whole body PET. Phys Med Biol. 44:595–606.
    Dizendorf, E. V., Treyer, V., Von Schulthess, G. K., and Hany, T. F. (2002). Application of oral contrast media in coregistered positron emission tomography-CT.Am. J. Roentgenol. 179: 477-481.
    Dowd MT., Chen CT., Wendel MJ., et al.(1991). Radiation dose to the bladder wall from 2-[18F]-Fluoro-2-deoxy-D-glucose in adult humans. J Nucl Med. 32:707–712.
    Eriksson, L., Watson, C. C., Eriksson, M., Casey, M. E., Loope, M., Schmand, M., Bendriem, B., and Nutt, R. (2002). On the effect of X-rays on the PET detectors in a PET/CT system. 2002 IEEE Nucl Sci. Symp. Conf. Rec. paper MI 1-40.
    Eubank, W. B., Mankoff, D. A., Schmiedl, U. P., Winter, T. C., Ill, Fisher, E. R., Olshen, A. B., Graham, M. M., and Eary, J. F. (1998). Imaging of oncologic patients: Benefit of combined CT and FDG PET in the diagnosis of malignancy. Am. J. Roentgenol 171: 1103-1110.
    Hany TF., Steinert HC., Goerres GW., Buck A., von Schulthess GK.(2002). PET Diagnostic Accuracy: Improvement with In-Line PET-CT System: Initial Results. Radiology. 225: 575-581.
    Hashimoto J., Kubo A., Ogawa K., Amano T., Fukuuchi Y., Motomura N., Ichiara T.(1997). Scatter and attenuation correction in technetium-99m brain SPET. J Nucl Med. 38:157–162.
    Hubbell, J. H., and Seltzer, S. M. (1997). Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients (version 1.03), [Online]. Available: http://physics.nist.gov/xaamdi [2002, August 16]. National Institute of Standards and Technology, Gaithersburg, MD.
    Hunold P., Vogt FM., Schmermund A., et al.(2003). Radiation exposure during cardiac CT: effective doses at multi–detector row CT and electron-beam CT. Radiology. 226: 145-152.
    ICRP Publication Number 60.(1990). Recommendations of the International Commission on Radiation Protection. Oxford: Pergamon Press.
    Israel O., Mor M, Gaitini D., et al.(2002). Combined Functional and Structural Evaluation of Cancer Patients with a Hybrid Camera–Based PET/CT System Using 18F-FDG. J Nucl Med. 43:1129–1136.

    Jackson, D. F., and Hawkes, D. J. (1981). X-ray attenuation coefficients of elements and mixtures. Phys. Rep. 70: 169-233.
    Jurik AG., Jensen LC., Hansen J.(1996). Radiation dose by spiral CT and conventional tomography of the sternoclavicular joints and the manubrium sterni. Skeletal Radiol. 25:467–470.
    Kamel EM., Goerres GW., Burger C., von Schulthess GK., Steinert HC.(2002). Recurrent Laryngeal Nerve Palsy in Patients with Lung Cancer: Detection with PET-CT Image Fusion-Report of Six Cases. Radiology. 224:153–156.
    Kinahan, P. E., Townsend, D. W., Beyer, T., and Sashin, D. (1998). Attenuation correction for a combined 3D PET/CT scanner. Med. Phys. 25:2046-2053.
    Kluetz, P. G., Meltzer, C. C., Villemagne, V. L., Kinahan, P. E., Chander, S., Martinelli, M. A., and Townsend, D. W. (2000). Combined PET/CT imaging in oncology: Impact on patient management. Clin. Positron lmag. 3:223-230.
    Lonneux M., Borbath I., Bol A., et al.(1999). Attenuation correction in whole-body FDG oncological studies: the role of statistical reconstruction. Eur J Nucl Med. 26:591–598.
    McCullough, E. C. (1975). Photon attenuation in computed tomography. Med. Phys. 2:307-320.
    Mehta, L., Echt, E. A., Nelson, A. D., and Deviin, A. L. (2002). Limitations of CT/PET fusion using software based algorithms. J. Nucl. Med. 43:305P.

    Nakamoto Y., Osman M., Cohade C., Marshall LT., Links JM., Kohlmyer S., Wahl RL.(2002). PET/CT: comparison of quantitative tracer uptake between germanium and CT transmission attenuation-corrected images. J Nucl Med. 43:1137–1143.
    Pietrzyk, U., Herholz, K., and Heiss, W. D. (1990). Three-dimensional alignment of functional and morphological tomograms. J. Comput. Assist. Tomogr. 14:51-59.
    Prvulovich EM., Lonn AHR., Bomanji JB., Jarrit PH., Ell PJ.(1997). Effect of attenuation correction on myocardial thallium-201 distribution in patients with a low likelihood of coronary artery disease. Eur J Nucl Med. 24:266–275.
    Rutherford, R. A., Pullman, B. R., and Isherwood, 1. (1976). Measurement of effective atomic number and electron density using an EMI scanner. Neuroradiology 11: 15-21.
    Tai, Y.-C., Lin, K. P., Hoh, C. K., Huang, S. C. H., and Hoffman, E. J. (1997). Utilization of 3-D elastic transformation in the registration of chest X-ray CT and whole body PET. IEEE Trans. Nucl. Sci. 44: 1606-1612.
    Thomas SR., Stabin MG., Chen CT., Samaratunga RC.(1999). A dynamic urinary bladder model for radiation dose calculations. MIRD pamphlet No 14, Revised. J Nucl Med. 40:102S–123S.
    Toth, T. L., Bromberg, N. B., Pan, T. S., Rabe, J., Woloschek, S. J., Li, J., and Seidenschnur, G. E. (2000). A dose reduction X-ray beam positioning system for high-speed multislice CT scanners. Med. Phys. 27:2659-2668.

    Townsend DW.(2001). A combined PET/CT scanner: the choices. J Nucl Med. 42:533–534.
    Townsend, D. W., Beyer, T., Kinahan, P. E., Brun, T., Roddy, R., Nutt, R., and Byars, L. G. (1998). The SMART scanner: A combined PET/CT tomograph for clinical oncology. 1998 IEEE Nucl. Sci. Symp. Conf. Rec., paper M5-1.
    Visvikis D., Cheze-LeRest C., Costa DC., Bomanji J., Gacinovic S., Ell PJ.(2001). Influence of OSEM and segmented attenuation correction in the calculation of standardised uptake values for [18F]FDG PET. Eur J Nucl Med. 28:1326–1335.
    Visvikis D., Costa DC., Croasdale I., et al., Ell PJ.(2003). CT-based attenuation correction in the calculation of semi-quantitative indices of [18F]FDG uptake in PET. Eur. J. Nucl. Med. 30: 344-353.
    Wahl, R. L., Quint, L. E., Cieslak, R. D., Aisen, A. M., Koeppe, R. A., and Meyer, C. R. (1993). "Anatometabolic" tumor imaging: Fusion of FDG PET with CT or MRI to localize foci of increased activity. J. Nucl. Med. 34:1190-1197.
    Watanabe, Y. (1999). Derivation of linear attenuation coefficients from CT numbers for low-energy photons. Phys. Med. Biol. 44: 2201-2211.
    Woods, R. P., Mazziotta, J. C., and Cherry, S. R. (1993). MRI-PET registration with an automated algorithm. J. Comput. Assist. Tomogr. 17:536-546.
    Wu TH., Liu RS., Dong SL., Chung YW., Chou KL., Lee JS.(2002). Dynamic evaluation of absorbed dose to the bladder wall with a balloon-bladder phantom during a study using [18F]fluorodeoxyglucose positron emission imaging. Nucl Med Commun. 23:749–755.
    Xu EZ., Mullani NA., Gould LK., Anderson WL.(1991). A segmented attenuation correction for PET. J Nucl Med. 32:161–165.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE