研究生: |
陳志豪 Chih-Hao Chen |
---|---|
論文名稱: |
先進微影:熱流技術與微量金屬污染的影響 Advanced Lithography for ULSI:Thermal Flow Technique and Impact of Trace Metallic contamination |
指導教授: |
朱鐵吉
柯富祥 陳學禮 趙天生 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 120 |
中文關鍵詞: | 熱流 、深紫外線阻劑 、電子束 、系統單晶片 、金屬污染 、多重厚度閘極氧化層 |
外文關鍵詞: | thermal flow, DUV resist, electron beam, system on a chip (SoC), metallic contamination, multiple-thickness gate oxide |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中有兩個主題。一個是熱流技術應用在電子束微影製程;另一個是阻劑中的微量金屬雜質對多重厚度閘極氧化層可靠性之影響。
在熱流技術應用於電子束微影製程的部分,我們首先定義出深紫外線阻劑(Shipley UV135)應用在電子束微影的最佳製程條件,諸如曝光劑量29.9~40.8μC/cm2 (for 200nm Trench),軟烤與曝後烤溫度/時間分別為120℃/60sec與130℃/90sec。其次,UV135的熱流性質也在本實驗中獲得評估,影響熱流的參數為熱流烘烤溫度、烘烤時間以及圖案的排列密度必須大於1:1,熱流後的圖案才不會有變形之虞。最後,UV135的蝕刻性質也獲得驗證。二氧化矽對UV135的蝕刻選擇比最高可達到11.46。並且可以經由熱流製程簡單地,製作出小於60奈米的接觸洞。
在阻劑中的微量金屬雜質對多重厚度閘極氧化層可靠性之影響的部分,我們以回蝕刻(etching back)及再氧化的方式,在單一晶片上製作出多重厚度(5.1nm與4.8nm)的閘極氧化層,以因應將來系統單晶片(System on a Chip)的趨勢。並在阻劑中加入鈣、銅、鐵、鎳與鋅五種微量金屬雜質(1013cm-2與1011cm-2),模擬製程中光阻可能受到的污染並探討其對元件電性的影響。阻劑中的微量金屬濃度若在1017cm-3以下,經過RCA清洗後,殘留在氧化層表面的濃度已在全反射X射線螢光光譜儀(TXRF)的偵測極限以下。即使如此,仍可從崩潰電荷、崩潰電場、歸一化平帶電壓與中間能隙陷阱密度看出,以鋅使元件退化得最嚴重。從中間能隙陷阱密度結果顯示出,來自環境中的鈣金屬比我們添加在阻劑中的鈣金屬影響更鉅。此外,鐵與鎳金屬在N2O氧化層所造成的平帶電壓平移,比在O2氧化層輕微,顯示鐵鎳金屬在N2O氧化層內擴散比較不容易。
參考文獻
1. K. Imai et al., “CMOS device optimization for system-on-a-chip application”, Tech. Dig. IEDM, 2001.
2. 許兼貴, 深紫外線抗反射技術及次100奈米世代電子束直寫阻劑特性研究, 國立清華大學原子科學系碩士論文, 2001.
3. D. A. Skoog, F. J. Holler and T. A. Nieman, Principles of Instrumental Analysis, Fifth Edition, Saunders College Publishing, p.805, 1998.
4. A. Schiltz and P. J. Paniez, “In-situ determination of photoresist glass transition temperature by wafer curvature measurement techniques”, Microelectronic Engineering 27 pp.413-416, 1995.
5. D. Chin, “Executing System On A Chip: Requirements for A Successful SOC Implementation”, Tech. Dig. IEDM, p.3, 1998.
6. M. Togo, K. Noda, and T. Tanigawa, “Multiple-Thickness Gate Oxide and Dual-Gate Technologies for High-Performance Logic-Embedded DRAMs”, Tech. Dig. IEDM, p.347, 1998.
7. Ya-Chin King, Charles Kuo, Tsu-Jae King, Chenming Hu, “Sub-5nm Multiple-Thickness Gate Oxide Technology Using Oxygen Implantation”, Tech. Dig. IEDM, 1998.
8. Y. Goto, K. Imai, E. Hasegawa, T. Ohashi, N. Kimizuka, T. Toda, N. Hamanaka, and T. Horiuchi, “A Triple Gate Oxide CMOS Technology Using Fluorine Implant for System-on-a-Chip”, Tech. Dig. IEDM, p.148, 2000.
9. C. H. Lee, H. F. Luan, S. C. Song, S. J. Lee, B. Evans and D.L. Kwong, “A Manufacturable Multiple Gate Oxynitride Thickness Technology for System On a Chip”, Tech. Dig. IEDM, p.491, 1999.
10. C. T. Liu, E. J. Lloyd, Yi Ma, M. Du, R. L. Opila, and S. J. Hillenius, “High Performance 0.2 μm CMOS with 2.5 nm Gate Oxide Grown Nitrogen Implanted Si Substrates”, Tech. Dig. IEDM, p.499, 1996.
11. D. Macintyre and S. Thoms, “High Resolution Electron Beam Lithography Studies on Shipley Chemically Amplified DUV Resists”,, Microelectronic Engineering 35, 213-216 (1997).
12. S. Thoms and D. Macintyre, “Process Optimization of DUV Photoresists for Electron Beam Lithography”, Microelectronic Engineering 46, 287-290 (1997).
13. H. Elsner, H.-G. Meyer, A. Voigt and G. Grutzner, “Evaluation of ma-N 2400 Series DUV Photoresist for Electron Beam Exposure”, Microelectronic Engineering 46, 389-392 (1999).
14. C. Magg and M. Lercel, “Chemically amplified resists for electron-beam projection lithography mask fabrication”, Proc. SPIE 3997, pp. 276-283 (2000).
15. Z. Masnyj, P. Mangat, E. Ainley, K. Nordquist and D. Resnick, “Evaluation of Negative DUV Resist UVN30 for Electron Beam Exposure of NGL Masks”, Proc. SPIE 3997, pp. 525-529 (2000).
16. L. E. Ocola, M. I. Blakey, P. A. Orphanos, W.–Y. Li, A. E. Novembre, R. L. Brainard, J. F. Mackevich and G. N. Taylor, “Optimization of DUV Chemically Amplified Resist Platforms for SCALPEL E-beam Exposure”, Proc. SPIE 3997, pp. 194-203 (2000)
17. S.-K. Kim, Y.-S. Kim, J.-S. Kim, C.-K. Bok, Y.-M. Ham and K.-H. Baik, “Comparison Study for Sub-0.13μm Lithography between ArF and KrF Lithography”, Proc. SPIE 4000, pp. 435-442 (2000)
18. J. Finders, J. Schoot, P. Vanoppen, “KrF lithography for 130 nm”, Proc. SPIE 4000, pp. 192-205 (2000)
19. S.-M. Kim, S.-J. Kim, C.-J. Bang, Y.-M. Ham, and K.-H. Baik, ”Optimization of Dipole Off-Axis Illumination by 1st-Order Efficiency Method for Sub 120 nm Nod with KrF Lithography”, Jpn. J. Appl. Phys. Vol.39, pp. 6777-6780 (2000).
20. J.-S. Kim, C.-I. Choi, M.-S. Kim, C.-K. Bok, H.-S. Kim, and K.-H. Baik, “Implementation of Sub-150 nm Contact Hole Pattern by Resist Flow Process”, Jpn. J. Appl. Phys. Vol.37, pp. 6863-6868 (1998).
21. J.-H. Chung, S.-H. Choi, Y. Kang, S.-G. Woo, and J.-T. Moon, “A Novel Resist Material for sub-100nm Contact Hole Pattern”, Proc. SPIE 3999, pp. 305-312 (2000).
22. J.-S. Kim, C.-W. Koh, G. Lee, J.-C. Jung, and K.-S. Shin, “Novel Routes toward Sub-70nm Contact Windows by Using New KrF Photoresist”, Proc. SPIE 4345, pp. 232-240 (2001).
23. T. Yamauchi, T. Matsui, J. Kanamori, Y. Miyakawa, and K. Shimoyama, “0.2μm Hole Pattern Generation by Critical Dimension Biassing Using Resin Overcoat”, Jpn. J. Appl. Phys. Vol. 34, pp. 6615-6621 (1995).
24. T. Kanda, H. Tanaka, and Y. Kinoshita, “Advanced Microlithography Process with Chemical Shrink Technology”, Proc. SPIE 3999, p. 881-889 (2000).
25. J.-S. Chun, S. Bakshi, S. Barnett, J. Shih, and S. Lee, “Contact Hole Size Reducing Methods by using Water-Soluble Organic Over-coating material (WASOOM) as a barrier layer toward 0.15um contact hole; Resist flow technique I”, Proc. SPIE 3999, p. 620-626 (2000).
26. T. Toyoshima, T. Ishibashi, A. Minanide, K. Sugino, K. Katayama, T. Shoya, I. Arimoto, N. Yasuda, H. Adachi, and Y. Matsui, “0.1 pm Level contact hole pattern formation with KrF lithography be resolution enhancement lithography assisted by chemical shrink (RELACS)“, EDM 1998, pp. 333 - 336 (1998).
27. M. Sebald, J. Berthold, M. Beyer, R. Leuschner, C. Noelscher, U. Scheler, R. Sezi, H. Ahne, and S. Birkle, “Application aspects of the Si-CARL bilayer process”, Proc. SPlE 1466, pp. 227 – 236 (1991).
28. S. Hien, G. Czech, W.-D. Domke, H. Raske, M. Sebald, I. Stiebert, “Dual-wavelength photoresist for sub-200 nm lithography”, Proc. SPlE 3333, pp. 154 - 164 (1998)
29. K. Aramaki, T. Hamada, D. K. Lee, H. Okazaki, N. Tsugama, and G. Pawlowski, “Techniques to Print Sub-0.2 μm Contact Holes”, Proc. SPlE 3999, pp. 738 – 749 (1991).
30. 龍文安, 積體電路微影製程, 高立圖書有限公司出版, p.14, 1998.
31. 柯富祥, 蔡輝嘉,”積體電路製程用光阻的發展現況”, 電子月刊第五卷第一期, p.92 (1999).
32. David Ruede, Monique Ercken, Tom Borgers, “The impact of airborne molecular bases on DUV photoresists”, Solid State Technology, Aug. 2001, p.63.
33. A. Schiltz and P. J. Paniez, “In-situ determination of photoresist glass transition temperature by wager curvature measurement techniques”, Microelectronic Engineering 27, pp.413-416, 1995.
34. 張俊彥主編,鄭晃忠校審, 積體電路製程及設備技術手冊, 中華民國產業科技發展協會, 中華民國電子材料與元件協會出版, 第十一章, 1997.
35. J. W. Coburn and Harold F. Winters, “Plasma etching – A discussion of mechanisms”, J. Vac. Sci. Technol., Vol. 16, No. 2, Mar./Apr. 1979, p.391.
36. Hong Xiao, Introduction to Semiconductor Manufacturing Technology, copyright by Prentice Hall, chapter 9, p.348, 2001.
37. The National Technology Roadmap for Semiconductor, SIA, 1994.
38. C. Y. Chang, and S. M. Sze, ULSI Technology, The McGraw-Hill Corn, Inc, 1996.
39. P. Singer, Semiconductor International, p.48, Feb. 1994.
40. T. Ohmi, "Future Trends and Applications of Ultra-Clean Technology," Tech. Dig, IEDM, 49, 1989.
41. S. Venhanerbeke et al., "The Effect of Metallic Contamination on Void Formation, Dielectric Breakdown and Hole Trapping in Thermal Si02 Layers," Proceeding in Cleaning Technology in Semiconductor Device Manufacturing, Electrochemical Society, p. 187, 1991.
42. W. B. Henley, "Monitoring Iron Contamination in Silicon by Surface Photovoltage and correlation to Gate Oxide Integrity," Mat. Res. Soc. Symp. Proc., 315, p.299, 1993,
43. W. Kem and D. A. Puotinen, "Cleaning Solution Based on Hydrogen Peroxide for Use in Silicon Semiconductor Technology," RCA Rev. 3 1, p. 187, 1970.
44. T. Ohmi, "Advanced Wet Chemical Cleaning for Future ULSI Fabrication," Electrochem. Soc. 184 in Meeting, New Orleans,p.495, 1993.
45. M. M. Heyns, "New Wet Cleaning Strategies for Obtaining Highly Reliable Thin Oxides," Mat. Res. Soc. Sym. Pro. 315, p.35, 1993.
46. T. Ohmi, "Metallic Impurities Segregation at the Interface Between Si Wafer and Liquid Wet Cleaning," J. Electrochem. Soc., 139, p.3317, 1992.
47. L. Jastrzebski, "Surface Photovoltage Monitoring of Heavy Metal Contamination in IC Manufacturing," Solid State Technology., December, p.27, 1992.
48. T. Gravier, "Copper Contamination Effect in 0.5μm BiCMOS Technology " Microelectronic Engineering. 33, p.211, 1997.
49. J. P. Joly, "Metallic Contamination Assessment of Silicon Wafers" Microelectronic Engineering. 40, p.285, 1998.
50. M. B. Shabani, "Low Temperature Out-Diffusion of Cu from Si Wafer" J. Electrochem. Soc., 143, p.2025, 1996.
51. A. L. P. Rotondaro, "Impact of Fe and Cu Contamination on the Minority Carrier Lifetime of Silicon Substrates" J. Electrochem. Soc., 143, p.3014,1996.
52. B. Shen, "Influences of Cu and Fe Impurities on Oxygen Precipitation in Czochralski-Grown Silicon" Jpn.J.Appl.Phys.,35,p.4187,1996.
53. M. Hill, "Quartz glass Components and Heavy Metal Contamination, "Solid State Technology., March, p.49, 1994.
54. T. Hori, Gate Dielectrics and MOS ULSIs: principles, technologies, and applications, Springer Series in Eletrophysics, p.173, 1997.
55. J. C. Lee et al., “Modeling and Characterization of Gate Oxide Reliability”, IEEE Trans. ED-35, p.2268, 1988.
56. J. Prendergast et al., “Investigation of the Intrinsic SiO2 Area Dependence Using TDDB Testing”, IEEE IRW FINAL REPORT, p.22, 1997.