簡易檢索 / 詳目顯示

研究生: 劉建宏
Chien Hung Liu
論文名稱: 高介電鈦酸鍶鋇閘極氧化層之研究及其在鐵電場效電晶體的應用
Study of (Ba0.5Sr0.5)TiO3 High-k Gate Dielectrics and Its Application on Ferroelectric Field Effect Transistors
指導教授: 吳振名
Jenn Ming Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 144
中文關鍵詞: 鈦酸鍶鋇氮化鐵電記憶體
外文關鍵詞: High-k, BST, Nitridation, FeRAM, MFIS, LiNbO3
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 眾多high-k材料中,鈦酸鍶鋇(BST)因具有高介電常數,高崩潰電壓及低漏電流,被視為下一世代G-bits DRAM的關鍵材料,同時也是未來電晶體閘極氧化層的候選者之一。近年來,鐵電場效電晶體(非揮發性記憶體:1- Transistor type FeRAM)因具有非破壞式讀取以及超高儲存密度等優點,因此受到各界矚目。而鈦酸鍶鋇因其鈣鈦礦結構和高介電常數的特性,非常有利於成長高品質的鐵電薄膜以及實現低電壓操作的鐵電場效記憶體。
    本論文主要分為三個主題: 其一,利用射頻磁控濺鍍法在p-type Si(100)基板上沉積BST 薄膜,探討厚度效應、濺鍍氣氛、工作壓力及RTA時間等製程參數對薄膜結晶性質及電性表現的影響。其二,在沉積薄膜前,導入N2O氮化製程來抑制BST與矽之間所產生的界面層厚度,實驗結果發現經N2O氮化前處理的BST試片有較高的整體電容值,且漏電流密度在-1MV/cm可降低至3*10-9A/cm2。此外在崩潰電場、界面態密度、遲滯現象等可靠度測試上也有明顯的改善。
    最後,我們應用經過氮化前處理的BST薄膜作為金屬-鐵電膜-絕緣層-矽(MFIS)的鐵電場效電晶體的絕緣層,以鋯酸鉛鋇(Pb1-xBaxZrO3, PBZ)以及鈮酸鋰(LiNbO3,LNO)為鐵電層,製作成MFIS電容結構並探討其記憶特性。
    以Pt/PBZ/BST/Si MFIS電容結構而言,應用BST薄膜做為MFIS的緩衝絕緣層,可以有效壓抑漏電流以及促進PBZ薄膜(200)優選指向的成長。在掃描振幅電壓±5V時可得到1.76V的記憶視窗,已足夠運用於記憶元件的邏輯偵測。而對於Pt/ LiNbO3/BST/Si MFIS電容結構來說,LiNbO3 雖然無法在BST薄膜上成長出c-軸(006)的優選指向,但是比起Pt/LiNbO3/Si MFS電容結構而言,仍可大幅降低其漏電流密度;其記憶視窗隨著掃描振幅電壓由±3V增至±14V時,亦從0.7V增加到3.96V。此外,載子注入及捕陷效應對MFIS記憶特性的影響在論文中也作了研究和探討。


    Contents Abstract…………………………………………………………………I Acknowledgements……………………………………………………III Contents………………………………………………………………..IV List of tables……………………………………………………………IX List of figures……………………………………………………………X Chapter 1 Introduction: Application of Ferroelectric Materials on Semiconductor Device…...1 1.1 High-k gate dielectrics……………………………………………………...1 1.2 Ferroelectric Random Access Memory (FeRAM)………………………...4 1.3 Motivation…………………………………………………………………...6 1.4 Thesis organization…………………………………………………………7 Chapter 2 Literature Review………………………………………… 13 2.1 Dielectric behavior…………………………………………………...........13 2.1.1 Polarization…………………………………………………………13 2.1.2 Dielectric Constant and Dielectric Loss…………………………..14 2.1.3 Dielectric breakdown………………………………........................14 2.1.4 Leakage current mechanism………………………........................15 2-2 Ferroelectricity……………………………………………………….........16 2-3 Ferroelectric Field Effect Transistors (1-Transistor type FeRAM)……18 2.3.1 Type of 1-T type FeRAM…………………………………………..19 2.3.2 Operation Principle of 1-T type FeRAM…………………………21 2.3.3 The current bottleneck of 1-T type FeRAM………………….......22 2.4 The issue of high-k gate dielectric as insulating buffer layer………….. 25 2.5 Nitridation treatment for high-k gate dielectrics………………………..28 2.5.1 Introduction………………………………………………………...28 2.5.2 Methods and mechanisms of nitridation for silicon……………...29 2.6 Characteristic of (BaxSr1-x)TiO3 (BST) materials………………………. 30 2.7 Characteristic of (Pb1-xBax) ZrO3 (PBZ) materials……………………...31 2.8 Characteristic of LiNbO3 (LNO) materials………………………………32 Chapter 3 Experimental procedure…………………………………..51 3.1 Preparation of BST thin films…………………………………………….51 3.1.1 Fabrication of BST Targets………………………………………..51 3.1.2 Preparation of Substrates …………………………………………51 3.1.3 Fabrication of Pt/BST/Si MIS and Pt/BST/Pt MIM Capacitors...53 3.2 Fabrication of Pt/PBZ/BST/Si MFIS Capacitors………………………..53 3.2.1 Fabrication of PBZ Targets………………………………………..53 3.2.2 Fabrication of Pt/PBZ/Pt MFM Capacitors and Pt/PBZ/BST/Si MFIS Capacitors…………………………………………………...53 3.3 Fabrication of Pt/LiNbO3/BST/Si MFIS Capacitors…………………….53 3.3.1 Fabrication of LiNbO3 Targets……………………………………53 3.2.2 Fabrication of Pt/LiNbO3/Pt (MFM), Pt/LiNbO3/Si(MFS) , and Pt/ LiNbO3/BST/Si (MFIS) Capacitors……………………………..54 3.4 Physical Measurement…………………………………………………….54 3.4.1 Ellipsometry………………………………………………………...54 3.4.2 X-Ray Diffraction (XRD)…………………………………………..54 3.4.3 X-ray photoelectron spectrometer (XPS)…………………………55 3.4.4 Auger electron spectroscopy (AES)……………………………….55 3.4.5 Atomic force microscopy (AFM) ………………………………….55 3.4.6 Scanning Electron Microscopy (SEM)……………………………55 3.5 Electrical Measurement …………………………………………………..56 3.5.1 Capacitance-Voltage (C-V) Measurements……………………….56 3.5.2 Ferroelectricity (P-E) Measurement………………………………56 3.5.3 Current – Voltage (I-V) Measurement……………………………56 Chapter 4 Study of the characteristics of BST high-k gate dielectrics………………………………………………...65 4-1 Effect of film thickness……………………………………………………65 4-1.1 X ray diffraction analysis………………………………………….65 4-1.2 Surface morphology………………………………………………..65 4-1.3 Electrical properties………………………………………………..66 4-2 Effect of Ar/O2 ratio……………………………………………………….67 4-2.1 X ray diffraction analysis………………………………………….68 4-2.2 Surface morphology………………………………………………..68 4-2.3 Electrical properties………………………………………………..69 4-3 Effect of working pressure………………………………………………..70 4-3.1 X ray analysis……………………………………………………....70 4-3.2 Composition analysis………………………………………………71 4-3.3 Electrical analysis…………………………………………………..71 4-4 Nitridation pre-treatment ………………………………………………...73 4-4.1 Comparison of electrical properties………………………………73 4-4.2 Comparison of reliability issues…………………………………...75 4-5 RTA treatment…………………………………………………………….77 4-5.1 X ray analysis………………………………………………………78 4-5.2 Electrical analysis ………………………………………………….78 Chapter 5 Study and Fabrication of MFIS Capacitors……………...99 5.1 (Pb,Ba)ZrO3 thin films………………………………………………… …99 5.1.1 Ferroelectricity of PBZ thin films…………………………………99 5.1.2 Structure properties of PBZ thin films deposited on BST…….....99 5.1.3 Electrical and memory properties of Pt/PBZ/BST/Si MFIS capacitors…………………………………………………………100 5.1.4 AES depth profiles of PBZ/BST/Si stakes……………………….103 5.2 LiNbO3 thin films………………………………………………………...104 5.2.1 Fabrication and structure properties of LiNbO3 thin films……104 5.2.2 Ferroelectricity of LiNbO3 thin films……………………………106 5.2.3 Electrical and memory properties of Pt/LiNbO3(LNO)/BST/Si MFIS capacitors………………………………………………….107 Chapter 6 Conclusions……………………………………………….123 Reference……………………………………………………………...126 List of tables Table 1-1. Dielectric constant of various high-k materials……………………….10 Table 1-2. Comparison of features of FRAM and other memory devices……….11 Table 2-1. The J-E relations of leakage current mechanisms……………………38 Table 2-2. The cell size factor of 1-T FeRAM and capacitor type FeRAM……..43 Table 2-3. Basic properties of LiNbO3 crystal…………………………………… 49 Table 3.1. The RF magnetron sputtering system………………………………....59 Table 3-2. Sputtering parameters of BST thin films deposition………………….60 Table 3-3. Sputtering parameters of Pt top electrodes……………………………60 Table 3-4. Sputtering parameters of PBZ thin films deposition………………....64 Table 3-5. Sputtering parameters of LiNbO3 thin films deposition……………...64 Table5-1. Deposition conditions of LiNbO3 thin films on p-Si (100) substrates..115 List of figures Fig.1-1.International Technology Roadmap for Semiconductors (ITRS 2004)……………………………………………………………………........9 Fig.1-2. LOP Logic Scaling-up of Gate Leakage Current Density Limit and of Simulated Gate Leakage due to Direct Tunneling. (ITRS 2004)…….....9 Fig.1-3. The technology requirements of FeRAM. (ITRS 2004 Updated)……....12 Fig.1-4. (a) 1T-1C type FeRAM (b) 1-T type FeRAM…........................................12 Fig.2-1. Four kinds of polarization mechanisms.....................................................35 Fig.2-2. The relation of the response frequency and polarization mechanisms...36 Fig.2-3. The phase difference of current and voltage in circuits………………...36 Fig.2-4. The MIS band diagram of Schottky emission……………………………37 Fig.2-5. The MIS band diagram of (a) F-N tunneling (b) Direct tunneling……..37 Fig.2-6. The MIS band diagram of Pool-Frenkel emission………………………38 Fig.2-7.The origin of ferroelectricity: Dipole created by the relative displacement of the sublattices of the cations and oxygen………………………….......39 Fig.2-8. The perovskite structure of BaTiO3……………………………………...39 Fig.2-9. The typical hysteresis loop (polarization to electric field) of ferroelectric materials……………………………………………………………………40 Fig.2-10. The two stable polarization state of ferroelectric materials like PZT can be defined as “0” and “1” for 1T-1C type FeRAM…………………..41 Fig.2-11. Type of 1T-FeRAM: (a) MFS-FET (b) MFIS-FET (c) MFMIS-FET..41 Fig.2-12. Schematic diagram of an all-perovskite ferroelectric FET and measurement circuit……………………………………………………...41 Fig.2-13. Schematic of memory cell for 1T2C-type FET and polarization directions for binary data………………………………………………..42 Fig.2-14. Operation of 1-T FeRAM and the memory window characteristic…...43 Fig.2-15. Gate stack of the 1T-FeRAM is modeled by a ferroelectric capacitance (CF ) in series with the semiconductor capacitance CIS ………………..43 Fig.2-16. Schematic for the effect of gate leakage current on 1-T FeRAM……..44 Fig.2-17. The location of the defect and trap charge in the MIS structure……...44 Fig.2-18. The effect of fixed charge on the flat band voltage shift……………….45 Fig.2-19. The charge trapping into the oxide cause C-V hysteresis loop……......45 Fig.2-20. The starching out effect caused by interface trap……………………...45 Fig.2-21.The mobile ions drift cause the counterclockwise C-V hysteresis……..45 Fig.2-22. Schematic model for silicon oxynitridation for NO or N2O…………...46 Fig.2-23. Nitrogen distribution profile for different nitridation sequence…........46 Fig.2-24. Effect of several isovalent substitutions on transition temperatures of ceramic BaTiO3………………………………………………………………………. ………………..47 Fig.2-25. The phase diagram of (Pb-Ba)ZrO3 ceramics. Aα is antiferroelectric phase, Fα is ferroelectric phase, and P is paraelectric phase………….48 Fig.2-26. The relation of phase change, composition change and temperature...49 Fig.2-27. Structure of LiNbO3 ………………………………………………………………………………...49 Fig.2-28. Cation arrangement in LiNbO3, showing orientation of dipole between Li +and Nb5+ …………………………………………………………………………………………..50 Fig.2-29. Li2O-Nb2O5 phase diagram near the existence of LiNbO3 …….......................50 Fig.3-1. The preparation flow chart of BST targets………………………………58 Fig.3-2. The 1-step cleaning process of silicon substrates………………………...59 Fig.3-3. The flow chart of the BST metal/insulator/silicon (MIS) capacitors and PBZ or LiNbO3 based MFIS capacitors preparation…………………...61 Fig.3-4. The preparation flow chart of PBZ targets……………………………....62 Fig.3-5. The preparation flow chart of LiNbO3 targets…………………………..63 Fig.4-1. XRD spectra of BST deposited on silicon with various thicknesses……80 Fig.4-2. AFM images of BST surface morphology with various thickness: (a) 70nm (b) 50nm(c) 30nm (d) 20nm…………………………………….80 Fig.4-3. High frequency C-V curve of BST MIS capacitors with various thicknesses………………………………………………………………… 82 Fig.4-4. Dielectric constant and EOT of BST MIS capacitors with various thicknesses………………………………………………………………….83 Fig.4-5. Leakage current density of BST MIS capacitors with various thicknesses………………………………………………………………….83 Fig.4-6. Deposition rate with different oxygen ambient of sputtering BST thin films……………………………………………………………………….84 Fig.4-7. XRD spectra of 30nm BST deposited on silicon with various Ar/O2 ratios………………………………………………………………………84 Fig.4-8. AFM images of BST surface morphology with various Ar/O2 ratios: (a) 90/10 (b) 80/20 (c) 70/30 (d) 60/40……………………………..86 Fig.4-9. The dielectric constant of 30nm BST thin films deposited on Pt bottom electrodes with various Ar/O2 ratios…………………………………….87 Fig.4-10. High frequency C-V curve of 30nm BST MIS capacitors with various Ar/O2 ratios………………………………………………………………87 Fig.4-11. Dielectric constant and EOT of BST MIS capacitors with various Ar/O2 ratios……………………………………………………………………..88 Fig.4-12. Leakage current density of BST thin films deposited in various Ar/O2 ratios……………………………………………………………………..88 Fig.4-13. Deposition rate of BST thin films deposited in various working pressure………………………………………………………………….89 Fig.4-14. XRD spectra of 30nm BST deposited on silicon with various working pressure……………………………………………………………….....89 Fig.4-15. XPS composition analysis: (Ba+Sr)/Ti ratios of BST thin films deposited by various working pressure……………………………..90 Fig.4-16. High frequency C-V curve of 30nm BST MIS capacitors with various workingpressure………………………………………………………..90 Fig.4-17. The dissipation factors of BST MIS capacitors with various working pressure………………………………………………………………….91 Fig.4-18. XPS of the N2O pre-treatment silicon surface………………………...91 Fig.4-19. High frequency C-V curves of N2O pre-treatment samples and non-nitridation samples………………………………………………...92 Fig.4-20. AES depth profiles of (a) non-nitrided samples (b) N2O pre-treatment samples…………………………………………………………………..92 Fig.4-21. The leakage current density of N2O pre-treatment samples and N2O pre-treatment samples and non-nitrided samples……………………93 Fig.4-22. The high-frequency C-V hysteresis of N2O pre-treatment samples and non-nitrided samples…………………………………………………....94 Fig.4-23. Interface traps density of (a) non-nitrided samples and (b) N2O pre-treatment samples………………………………………………......94 Fig.4-24. The time zero dielectric breakdown measurements of N2O pre-treatment samples and non-nitrided samples…………………….95 Fig.4-25. TDDB life time test of N2O pre-treatment samples and non-nitrided samples…………………………………………………………………..95 Fig.4-26. XRD spectra of BST thin films at RTA 600˚C, O2 ambient with different time…………………………………………………………….96 Fig.4-27. High frequency C-V curves of BST thin films at RTA 600˚C, O2 ambient with different time………………………………………………………97 Fig.4-28. Dielectric constant and EOT of BST thin films at RTA 600˚C, O2 ambient with different time…………………………………………… 97 Fig.4-29. Leakage current of BST thin films at RTA 600˚C, O2 ambient with different time…………………………………………………………….97 Fig.4-30. Interface trap density (Dit) of BST thin films at RTA 600˚C, O2 ambient with different time………………………………………………………98 Fig.5-1. XRD spectra of PBZ thin films deposited on Pt bottom electrode…….110 Fig.5-2. P-E curve of PBZ thin films with 360nm thicknesses deposited on Pt electrode…………………………………………………………………..110 Fig.5-3. XRD spectra of PBZ thin films deposited on silicon with 30nm BST buffer layer……………………………………………………………….111 Fig.5-4. SEM image of PBZ thin films deposited on BST (30nm)/Si substrates (a) Cross section (b) plane view…………………………………………111 Fig.5-5. AFM image of of PBZ thin films deposited on BST (30nm)/Si substrates (a) Surface morphology (b) top view……………………………………112 Fig.5-6. High frequency C-V curve of Pt/PBZ(360nm)/ BST(30nm)/Si MFIS capacitors ………………………………………………………………...112 Fig. 5-7. Unstable flat band voltage shift of Pt/PBZ(360nm)/ BST(30nm)/Si MFIS capacitors when the applied gate voltages are larger than 5V……….113 Fig .5-8. The relationship of memory windows with increasing sweep gate bias……………………………………………………………………….113 Fig.5-9. Leakage current density of Pt/PBZ(360nm)/ BST(30nm)/Si MFIS capacitors…………………………………………………………………114 Fig.5-10. The retention characteristics of Pt/PBZ(360nm)/ BST(30nm)/Si MFIS capacitors………………………………………………………………..114 Fig.5-11. AES depth profiles of PBZ(360nm)/BST(30nm)/Si stakes……………115 Fig.5-12. XRD spectra of LiNbO3 thin films deposited on silicon substrates with optimized condition : Ar/O2 = 60/40, 2mtorr, 90W, 600゚C…………116 Fig.5-13. XRD spectra of LiNbO3 thin films deposited on Pt substrates with optimized condition : Ar/O2 = 60/40, 2mtorr, 90W, 600゚C…………132 Fig.5-14. SEM images of 160nm thick LiNbO3 thin films deposited on silicon substrates. (a) plane view (b) cross section……………………………116 Fig.5-15. SEM plane view of 160nm thick LiNbO3 thin films deposited on Pt substrates………………………………………………………………...117 Fig.5-16. XRD spectra of LiNbO3 thin films deposited on silicon substrates with 30nm thick BST buffer layer. (Optimized condition : Ar/O2 = 80/20, 2mtorr, 90W, 600゚C.)…………………………………………………..118 Fig.5-17. SEM plane view of LiNbO3 thin films deposited on silicon substrates with 30nm BST buffer layers………………………………………….118 Fig.5.18. AFM images of LiNbO3 thin films deposited on silicon substrates with 30nm BST buffer layers………………………………………………...119 Fig.5.19. P-E curves of 160nm thick LiNbO3 thin films deposited on silicon substrates………………………………………………………………….119 Fig.5-20. Leakage current density of Pt/ LiNbO3(160nm)/Si capacitors……….120 Fig.5-21. High frequency C-V curve of Pt/LNO (160nm)/ BST (30nm)/Si MFIS capacitors with the sweep gate bias ±3 ~ ±8V…………………………120 Fig.5-22. High frequency C-V curve of Pt/LNO (160nm)/ BST (30nm)/Si MFIS capacitors with the sweep gate bias ±9 ~ ±15V………………………..121 Fig.5-23. High frequency C-V curve of Pt/LNO (160nm)/ BST (30nm)/Si MFIS capacitors with different scan rate; the sweep gate bias is ±5V……...121 Fig.5-24. The relationship of memory windows with increasing sweep gate bias on Pt/LNO (160nm)/ BST (30nm)/Si MFIS capacitors….....................122 Fig.5-25. Leakage current density of Pt/LNO (160nm)/ BST (30nm)/Si MFIS capacitors………………………………………………………………122

    [1] http://www.itrs.net/Common/2004Update/2004Update.htm
    [2] L.A Ragnarsson, S. Guha, N. A. Bojarczuk, E. Cartier, M. V. Fischetti, K. Rim, and J. Karasinski, “Electrical characterization of Al2O3 n –channel MOSFETs with aluminum gates”, IEEE Electron Dev. Lett., vol. 2, 490(2001).
    [3]J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P.Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M.Rosamilia, “High k gate dielectrics Gd2O3 and Y2O3 for silicon” Appl. Phys. Lett. 77, 130 (2000).
    [4] S. Guha, E. Cartier, M. A. Gribelyuk, N. A. Borjarczuk, and M. A. Copel, “Atomic beam deposition of lanthanum- and yttrium-based oxide thin films for gate dielectrics” Appl. Phys. Lett. 77, 2710 (2000).
    [5] M. Copel, M. A. Gribelyuk, and E. Gusev, “Structure and stability of ultrathin zirconium oxide layers on Si (001) “Appl. Phys. Lett. 76,436 (2000).
    [6] B. H. Lee, R. Choi, L. Kang, S. Gopalan, R. Nieh, K. Onishi, Y. Jeon, W. J. Qi, C. Kang nand J. C .Lee, “Characteristics of TaN gate MOSFET with hafnium oxide (8Å-12Å)”, IEDM, 39 (2000).
    [7] A. Callegari, E. Cartier, M. Gribelyuk, H. F. Okorn-Schmidt, and T. Zabel,“Physical and electrical characterization of hafnium oxide and hafnium silicate sputtered films,” J. Appl. Phys., 90 ,6466 ( 2001).
    [8] H. F. Luan, S. J. Lee, C. H. Lee, S. C. Song, Y. L. Mao, Y. Senzaki, D. Roberts and D. L. Kwong, “High-quality Ta2O5 gate dielectrics with Tox <10 Å”, IEDM, 141 (1999).
    [9] R. Droopad, Z. Yu, J. Ramdani, L. Hilt, J. Curless, C. Overgaard, J. L. Edwards, J. Finder, K. Eisenbeiser, J. Wang, V. Kaushik, B-Y Ngyuen, B. Ooms, “Epitaxial oxides on silicon grown by molecular beam epitaxy”, J. Crys. Growth, 936 (2001).
    [10] S. A. Chambers and Y. Liang, Z. Yu, R. Droopad, J. Ramdani, and K. Eisenbeiser,” Band discontinuities at epitaxial SrTiO3 on Si(001) heterojunctions” Appl. Phys. Lett, 77, 1662 (2000).
    [11] Nitayama, A.; Kohyama, Y.; Hieda, K.; Future directions for DRAM memory cell technology. IEDM ,355(1998).
    [12] Cheol Seong Hwang, Soon Oh Park, Hag-Ju Cho, Chang Suk Kang, Ho-Kyu Kang, Sang In Lee, and Moon Yong Lee, “ Deposition of extremely thin (Ba,Sr)TiO3 thin films for ultra-large-scale integrated dynamic random access memory application.” Appl. Phys. Lett., 67, 2819 (1995).
    [13] Jack C.Lee, “Ultra-thin gate dielectrics and High-?dielectrics.”, IEEE EDS
    vanguard series of independent short courses.
    [14] B. A. Baumert, L.-H. Chang, A. T. Matsuda, T.-L. Tsai, C.J. Tracy, R. B. Gregory, P. L. Fejes, N. G. Cave, W. Chen, D. J. Taylor, T. Otsuki, E. Fujii, S. Hayashi, L. Suu, “Characterization of sputtered barium strontium titanate and strontium titanate-thin films”, J. Appl. Phys. 82, 2558(1997).
    [15] W.J. Lee, H.G. Kim, S.G. Yoon, “Microstructure dependence of electrical properties of (Ba0.5Sr0.5)TiO3 thin films deposited on Pt/SiO2/Si”, J. Appl. Phys., 80,5891 (1996).
    [16] K. Eisenberg, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, “Field effect transistor with SrTiO3 gate dielectrics”, Appl. Phys. Lett., 76, 1324 (2000).
    [17] R. A. McKee, F. J. Walker, M. F. Chisholm,” Crystalline Oxides on Silicon: The First Five Monolayers” Phys. Rev. Lett. 81, 3014 (1998).
    [18] R. A. McKee, F. J. Walker, M. F. Chisholm. Physical structure and inversion charge at a semiconductor interface with a crystalline oxide. Science, 293, 468 (2001).
    [19] R. A. McKee, F. J. Walker, M. Buongiorno Nardelli, W. A. Shelton,G. M. Stocks1” The Interface Phase and the Schottky Barrier for a Crystalline Dielectric on Silicon” Science, 300, 1726 (2003).
    [20]B. Cheng, M. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Z. Yu, P. M. Zeitzoff, and J. C. S. Woo, “The impact of high- k gate dielectrics and metal gate electrodes on sub-100 nm MOSFET’s”, IEEE Trans. Electron Devices, 46, 1537 (1999).
    [21] http://www.fujitsu.com/global/services/microelectronics/quality/fram/index_5.html
    [22] S. Y. Wu, IEEE Trans. Electron Dev., ED-21, 499 (1974).
    [23] J.F. Scott, C.A. Araujo, B.M. Melnick, L.D. McMillan, R. Zuleeg, “Quantitative measurement of space-charge effects in lead zirconate-titanate memories” J. Appl. Phys. 70 , 382 (1991).
    [24] G. S. Wang, X. J. Meng, J. L. Sun, Z. Q. Lai, J. Yu, S. L. Guo, J. G. Cheng, J.Tang, and J. H. Chu,” PbZr0.5Ti0.5O3/La0.5Sr0.5CoO3 heterostructures prepared by chemical solution routes on silicon with no fatigue polarization” Appl. Phys. Lett. 79, 3476 (2001).
    [25] Chun-Sheng Liang, Jenn-Ming Wu, and Ming-Chu Chang,” Ferroelectric BaPbO3 /PbZr0.53Ti0.47 /BaPbO3 heterostructures” Appl. Phys. Lett. 81, 3624 (2002).
    [26] J. H. Tseng and T. B. Wu,” Ferroelectric lead barium zirconate thin film of high fatigue resistance” Appl. Phys. Lett. 78, 1721 (2001).
    [27] A.J. Moulson and J. M. Herbert, “Electroceramics, materials, properties and applications”, (1990) p52-55 and p61-62.
    [28] S. M. Sze, Physics of Semiconductor Devices, Ch. 7, p. 402, Wiley, New York (1981).
    [29] A. Schenk and G. Heiser, 〝Modeling and Simulation of Tunneling through Ultra-thin Gate Dielectrics〞, J. Appl. Phys., 81, 7900(1997)
    [30] W. L. Warren, D. Dimos, and R. M. Waser, “Degradation Mechanisms in Ferroelectric and High-Permittivity Perovskites”, MRS Bulletin, July (1996) p40-45.
    [31] T. Mikolajick. “ The Future of Nonvolatile Memories”. Non-Volatile Memory Technology Symposium 2002
    [32] Ross,I.M: US Patent No.2791760 (1957)
    [33] E. Tokumitsu, T. Isobe, T. Kijima and H.Ishiwara. “Fabrication and Characterization of Metal-Ferroelectric-Metal-Insulator-Semiconductor (MFMIS) Structures Using Ferroelectric (Bi, La)4Ti3O12 Films”. Jpn. J. Appl. Phys., 40, 5576(2001)
    [34] A. G. Schrott and J. A. Misewich, “Ferroelectric field-effect transistor with a SrRuxTi1-xO3 channel” Appl. Phys. Lett., 82, 4770 (2003).
    [35] S. Mathews, R. Ramesh, T. Venkatesan, J. Benedetto, “Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures” SCIENCE, 276, 238(1997)
    [36] Sung-Min Yoon and Hiroshi Ishiwara, “Memory Operations of 1T2C-Type Ferroelectric Memory Cell With Excellent Data Retention Characteristics” IEEE Trans. Electron. Dev.,48, 2002(2001)
    [37] H. Ishiwara. “Recent progress of FET-type ferroelectric memories” IEDM, 263, 2003
    [38] Minoru Noda, Kazushi Kodama, Satoshi Kitai, Mitsue Takahashi, Takeshi Kanashima, and Masanori Okuyama, “ Basic characteristics of metal-ferroelectric-insulator-semiconductor structure using a high-k PrOx insulator layer” J. Appl. Phys., 93, 4137 ,(2003).
    [39]Eisuke Tokumitsu, Gen Fujii and Hiroshi Ishiwara, “Nonvolatile ferroelectric-gate field-effect transistors using SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures”. Appl. Phys. Lett., 75 ,575 (1999)
    [40] Takahashi I, Sakurai H, Isogai T. “ MFIS structure device with a low dielectric constant ferroelectric Sr-2(Ta1-x,Nb-x)(2)O-7 formed by plasma physical vapor deposition and oxygen radical treatment” Integrated Ferroelectrics., 65, 29 ( 2004)
    [41] T. P. Ma, and Jin-Ping Han, “ Why is Nonvolatile Ferroelectric Memory Field-Effect Transistor Still Elusive? ” IEEE Electron Dev. Lett., 23, 386( 2002)
    [42]Fujimura N, Yoshimura T.” Preparation and properties of ferroelectric-insulator-semiconductor junctions using YMnO3 thin films”. Topics in Appl. Phys., 98,199(2005)
    [43] Aizawa K, Okamoto T, Tokumitsu E. “ Fabrication and characterization of metal-ferroelectrics-semiconductor field effect transistor using epitaxial BaMgF4 films grown on Si(111) substrates”. Integrated Ferroelectrics, 15 ,245(1997)
    [44] Kim KH. “ Metal-ferroelectric-semiconductor (MFS) FET's using LiNbO3/Si (100) structures for nonvolatile memory application”. IEEE Electron Dev. Lett., 19,204(1998).
    [45]Zhang FY, Hsu ST, Ono Y. “ Fabrication and characterization of sub-micron metal-ferroelectric-insulator-semiconductor field effect transistors with Pt/Pb5Ge3O11/ZrO2/Si structure “. Jpn. J. Appl. Phys. 40 , 635(2001)
    [46] Nakaiso T, Noda M, Okuyama M.” Low-temperature preparation of ferroelectric Sr-2(Ta1-x,Nb-x)(2)O-7 thin films by pulsed laser deposition and their application to metal-ferroelectric-insulator-semiconductor-FET”. Jpn. J. Appl. Phys. 40 , 2935 (2001)
    [47] Ishiwara H. “The FET-type FeRAM”. Topics in Appl. Phys..93, 233(2004).
    [48] Takeshi Kijima and Hironori Matsunaga. “Preparation of Bi4Ti3O12 Thin Film on Si(100) Substrate Using Bi2SiO5 Buffer Layer and Its Electric Characterization”. Jpn. J. Appl. Phys., 37 , 5171 (1998)
    [49] Koji Aizawa, Byung-Eun Park. “Impact of HfO2 buffer layers on data retention characteristics of ferroelectric-gate field-effect transistors”. Appl. Phys. Lett., 85 ,3199 (2004)
    [50] T. Y. Tseng and S. Y. Lee. “Improvement in retention time of metal–ferroelectric–metal–insulator–semiconductor structures using MgO doped Ba0.7Sr0.3TiO3 insulator layer”. Appl. Phys. Lett., 83 ,981 (2004)
    [51] Sakai, S. and Ilangovan, R. “Metal–Ferroelectric–Insulator–Semiconductor
    Memory FET With Long Retention and High Endurance”. IEEE Electron Dev. Lett.,25,369(2004).
    [52]Sakai S, Ilangovan R, Takahashi M. “Pt/SrBi2Ta2O9/Hf-Al-O/Si field-effect-transistor with long retention using unsaturated ferroelectric polarization switching”. Jpn. J. Appl. Phys., 43 , 7876 (2004).
    [53]Mingjiao Liu and Hong Koo Kim. “Lead–zirconate–titanate-based metal/ferroelectric/insulator/semiconductor structure for nonvolatile memories.” J. Appl. Phys.,91 , 5985 (2002).
    [54] Albert Chin, M. Y. Yang, C. L. Sun, and S. Y. Chen. “Stack Gate PZT/Al2O3 One Transistor Ferroelectric Memory”. IEEE Electron Dev. Lett.,22,336(2001).
    [55] Byung-Eun Park, Shigeto Shouriki, Eisuke Tokumitsu and Hiroshi Ishiwara. “ Fabrication of PbZrxTi1-xO3 Films on Si Structures Using Y2O3 Buffer Layers”. Jpn. J. Appl. Phys., 37, 5145(1998)
    [56]Ikuo Sakai, Eisuke Tokumitu and Hiroshi Ishiwara. “Preparation and Characterization of PZT Thin Films on CeO 2(111)/Si(111) Structures”. Jpn. J. Appl. Phys., 35, 4987 (1996)
    [57] Byung-Eun Park, Kazuhiro Takahashi, and Hiroshi Ishiwara. “ Five-day-long ferroelectric memory effect in Pt/ .(Bi,La).4Ti3O12/HfO2/Si structures”. Appl. Phys. Lett., 85 ,4448 (2004).
    [58] Chulsoo Byun, Yong-Il Kim, Won-Jong Lee, and Byong-Whi Lee. “ Effect of a TiO2 Buffer Layer on the C- V Properties of Pt/PbTiO 3/TiO 2/Si Structure”. Jpn. J. Appl. Phys., 36, 5588(1997)
    [59]Park JD, Choi JH, Oh TS. “ Electrical characteristics of the Pt/SrBi2.4Ta2O9/ZrO2/Siastructuresforsmetal-ferroelectric-insulator-semiconductor field-effect-transistor application”. Jpn. J. Appl. Phys., 41, 5645(2002)
    [60] Sze CY, Lee JYM.“ Electrical characteristics of metal-ferroelectric (PbZrxTi1-x O3)-insulator (Ta2O5)-silicon structure for nonvolatile memory applications.” J. Vac .Sci .Tech. B 18 ,2848(2000)
    [61] Eisuke Tokumitsu, Ryo-ichi Nakamura, and Hiroshi Ishiwara. “ Nonvolatile Memory Operations of Metal- Ferroelectric-Insulator-Semiconductor (MFIS) FET’s Using PLZT/STO/Si(100) Structures.” IEEE Electron Dev. Lett.,160,18(1997).
    [62] G. D. Wilk, R. M. Wallace, and J. M. Anthony. “ High-k gate dielectrics: Current status and materials properties considerations”. J. Appl. Phys., 85, 5243 (2001)
    [63] Dieter K. Schroder, 〝Semiconductor Material and Device Characterization〞,
    Second Edition, p.356~372.
    [64]C. S. Kang, H.-J. Cho, K. Onishi, R. Nieh, R. Choi, S. Gopalan, S. Krishnan, J. H.Han, and J. C. Lee. “ Bonding states and electrical properties of ultrathin HfOxNy gate dielectrics”. Appl. Phys. Lett., 81, 2593(2002)
    [65] P. D. Kirsch, C. S. Kang, J. Lozano, J. C. Lee, and J. G. Ekerdt, “Electrical and spectroscopic comparison of HfO2/Si interfaces on nitrided and un-nitrided Si(100)”. J. Appl. Phys., 91,4353 (2002).
    [66] Chih-Yi Liu, Hang-Ting Lue, and Tseung-Yuen Tseng, “ Effects of nitridation of silicon and repeated spike heating on the electrical properties of SrTiO3 gate dielectrics” Appl. Phys. Lett., 81, 4416 (2002).
    [67] Han LK, Wristers D, Yan J, Bhat M, Kwong DL. “ Highly supressed boron penetration on NO-nitrided SiO2 for ptpolysilicon gated MOS device application”. IEEE Electron Dev. Lett.,16,319(1995)
    [68] M. Beichele, A. J. Bauer, M. Herden, and H. Ryssel, “Suppression of boron penetration through thin gate oxides by nitrogen implantation into the gate electrode .” Solid-State Electron., 45, 1383(2001).
    [69] M. Bhat, J. Kim, J. Yan, G. W. Yoon, L. K. Han, and D. L. Kwong, “ Characteristics of ultra NO-grown oxynitrides ”. IEEE Electron Dev. Lett., 15, 421(1994).
    [70] H. Huang, W. Ting, D.-L. Kwong, and J. Lee. “ Improved reliability characteristics of submicrometer nMOSFETs with oxynitride gate dielectric prepared by rapid thermal oxidation in N2O “.IEEE Electron Dev. Lett., 12, 495(1991).
    [71] Choi, C.H.; Jeon, T.S.; Clark, R.; Kwong, D.L. “ Electrical properties and thermal stability of CVD HfOxNy gate dielectric with poly-Si gate electrode” IEEE Electron Dev. Lett., 24, 215 (2003).
    [72] G. Lucovsky, Y. Wu, H. Niimi, V. Misra, and J. C. Phillips. “ Bonding constraints and defect formation at interfaces between crystalline silicon and advanced single layer and composite gate dielectrics”.Appl. Phys. Lett., 74, 2005 (1999).
    [73] D. K. Schroder and J. A. Babcock. “ Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing”. J. Appl. Phys., 94, 1 (2003).
    [74] H. Hwang, W. Ting, B. Maiti, D. L. Kwong, and J. Lee, “Electrical Characteristics of Ultrathin Oxynitride Gate Dielectrics Prepared by Rapid Thermal Oxidation of Silicon in N2O,” Appl. Phys. Lett., 57, 1010 (1990).
    [75] H. T. Tang, W. N. Lennard, M. Zinke-Allmang, I. V. Mitchell, L. C. Feldman, M. L. Green, and D. Brasen, “Nitrogen Content of Oxynitride Films on Si(100),” Appl. Phys. Lett., 64, 64 (1994).
    [76] M. Bhat, L. K. Han, D. Wristers, J. Yan, D. L. Kwong, and J. Fulford, “ Effect of Chemical Composition on the Electrical Properties of NO-Nitrided SiO2,” Appl. Phys. Lett., 66,1225 (1995).
    [77] D. Landheer, Y. Tao, D. X. Xu, G. I. Sproule, and D. A. Buchanan, “Defects Generated by Fowler–Nordheim Injection in Silicon Dioxide Films Produced by Plasma-Enhanced Chemical-Vapour Deposition with Nitrous Oxide and Silane,” J. Appl. Phys., 78, 1818 (1995).
    [78] T. P. Ma, “Gate Dielectric Properties of Silicon Nitride Films Formed by Jet Vapor Deposition,” Appl. Surf. Sci., 117, 259 (1997)
    [79] H. Wang and Y. C. Chen. “ Instabilities of metal-oxide-semiconductor transistor with high-temperature annealing of its gate oxide in ammonia.” J. Appl. Phys., 67, 7132(1990)
    [80] Shri Singhvi and Christos G. Takoudis, “ Growth kinetics of furnace silicon oxynitridation in nitrous oxide ambients” Appl. Phys. Lett., 82, 442(1997).
    [81]E. P. Gusev,H.-C. Lu,E. L. Garfunkel,T. Gustafsson,M. L. Green “ Growth and characterization of ultrathin nitrided silicon oxide films” IBM J. Res. Develop., 43 ,265(1999).
    [82] Okada Y, Tobin PJ, Rushbrook P, Dehart WL. “ The performance and reliability of 0.4 micron MOSFETs with gate oxynitrides grown by rapid thermal processing using mixtures of N2O and O2” . IEEE Trans. Electron Dev., 41,191(1994).
    [83]Yao ZQ, Harrison HB, Dimitrijev S, Yeow YT. “ Effects of nitric oxide annealing of thermally grown silicon dioxide characteristics”. IEEE Electron Dev. Lett, 16,345(1995).
    [84] M. L. Green, D. Brasen, K. W. Evans-Lutterodt, L. C. Feldman, and K. Krisch. “ Rapid thermal oxidation of silicon in N20 between 800 and 1200 “C: lncorporated nitrogen and interfacial roughness”. Appl. Phys. Lett., 65, 848(1994).
    [85]M. L. Green, D. Brasen, L. Feldman, E. Garfunkel, E. P.Gusev, T. Gustafsson, W. N. Lennard, H. C. Lu, and T. Sorsch, “Thermal Routes to Ultrathin Oxynitrides,”
    Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, E. Garfunkel, E. P. Gusev, and A. Y. Vul’, Eds., Kluwer Academic Publishers, Dordrecht, Netherlands1998, p. 181
    [86]E. C. Carr, K. A. Ellis, and R. A. Buhrman, “Nitrogen Profiles in Thin SiO2 in N2O: The Role of Atomic Oxygen,” Appl. Phys. Lett., 66, 1492 (1995).
    [87] K. A. Ellis and R. A. Buhrman, “Furnace Gas-Phase Chemistry of Silicon Oxynitridation in N2O,” Appl. Phys. Lett., 68, 1696 (1996).
    [88]P. J. Tobin, Y. Okada, S. A. Ajuria, V. Lakhotia, W. A. Feil, and R. I. Hedge, “Furnace Formation of Silicon Oxynitride Thin Dielectrics in N2O,” J. Appl. Phys. 75,1811 (1994).
    [89] B. Jaffe, W. R. Cook, Jr. and H. Jaffe, “Piezoelectric ceramics”, Academic Press,
    India, 1971.
    [90] Yongjoo Jeon; Byoung Hun Lee; Zawadzki, K.; Wen-Jie Qi; Lucas, A.; Nieh, R.; Lee, J.C.; “ Effect of barrier layer on the electrical and reliability characteristics of high-k gate dielectric films”.IEDM,797,1998.
    [91] Noboru Ichinose, Takashi Ogiwara. “ Preparation and Rapid Thermal Annealing Effect of (Ba, Sr)TiO3 Thin Films “.Jpn. J. Appl. Phys.,34,5198(1995)
    [92] Anuranjan Srivastava, Valentin Craciun, Joshua M. Howard, and Rajiv K. Singh. “ Enhanced electrical properties of Ba0.5Sr0.5TiO3 thin films grown
    by ultraviolet-assisted pulsed-laser deposition”. Appl.Phys.Lett., 75, 3002 (1999).
    [93] A. H. Mueller, N. A. Suvorova, and E. A. Irene. “ Real-time observations of interface formation for barium strontium titanate films on silicon”. Appl. Phys. Lett., 80, 3796(2002).
    [94] A. H. Mueller, N. A. Suvorova, and E. A. Irene. “ Model for interface formation and the resulting electrical properties for barium–strontium–titanate films on silicon”. J. Appl. Phys., 93,3866(2003)
    [95] N. A. Suvorova, C. M. Lopez, and E. A. Irene. “ Comparison of interfaces for .Ba,Sr.TiO3 films deposited on Si and SiO2/Si substrates”. J. Appl. Phys.95,2672(2004)
    [96] Phase Diagram for Ceramists, Fig. 862.
    [97] G. Seirnet, “Ferroelectricity and Antiferroelectricity in Ceramic PbZrO3 Containing Ba or Sr”, Phys. Rev., 86,219 (1952).
    [98] J. H. Tseng and T. B. Wu, “ Ferroelectric lead barium zirconate thin film of high fatigue resistance”. Appl. Phys. Lett., 78, 1721(2001).
    [99] Cheng-Lung Hung, Tai-Bor Wu,“ Effects of Nb doping on highly fatigue-resistant thin films of (Pb0.8Ba0.2)ZrO3 for ferroelectric memory application”. J. Crys. Growth 274.402(2005)
    [100] W. H. Zachariasen, Skr. Norske Vid-Ada, Oslo, Mat. Naturv. No.4(1928)
    [101] M. Haruna, J. Tsutumi, Y. Segawa, H. Nishhara, SPIE 2045, (1994) p133.
    [102] A. A. Ballman, J. American Ceram.Soc. 48, (1965) p112.
    [103] Megaw, Helen D. "Geometrical and Structural Relations in the Rhombohedral Perovskites." Acta Crystallographica A31 (1975): 161-173.
    [104] Kuz'minov, Yu S., and A. M. Porkhorov. Physics and Chemistry of Crystalline Lithium Niobate. Bristol: Adam Hilger, 1990.
    [105] Yet-Ming Chiang, Dunbar Birnie, W. David Kingery. “Physical Ceramics”. Ch. 1, p36. Wiley, New York, 1997.
    [106] L. O. Svaasand, M. Eriksrud, G. Nakken, and A. P. Grande, J. Cryst. Growth ,22, 230 (1974).
    [107] Timothy A. Rost, He Lin, and Thomas A. Rabson.” Ferroelectric switching of a field-effect transistor with a lithium niobate gate insulator”. Appl. Phys. Lett.,59, 3654(1991).
    [108]D. G. Lin, B. S. Jang, S. I. Moon, C. Y. Wang, and J. Yi. “Characteristics of LiNbO3 memory capacitors fabricated using a low thermal budget process.” Solid-state electron., 45, 1159(2001).
    [109] Tung Ming Pan,Tan Fu Lei,Tien Sheng Chao,Ming Chi Liaw, Fu Hsiang Ko, and Chih Peng Lu. “One-Step Cleaning Solution to Replace the Conventional RCA Two-Step Cleaning Recipe for Pregate Oxide Cleaning”. J. Electrochemical Society, 148, G315 (2001).
    [110]Su-Hyon Paek, Jinhee Won, Kong-Soo Lee, Jin-Seog Choi1 and Chi-Sun Park2 , “Electrical and Microstructural Degradation with Decreasing Thickness of (Ba, Sr)TiO3 Thin Films Deposited by RF Magnetron Sputtering”. Jpn. J. Appl. Phys., 35, 5757, (1996)
    [111]Yutaka Takeshima, Katsuhiko Tanaka and Yukio Sakabe. “Thickness Dependence of Characteristics for (Ba, Sr)TiO3 Thin Films Prepared by Metalorganic Chemical Vapor Deposition”. Jpn. J. Appl. Phys., 39, 5389 (2000)
    [112] Won-Jae Lee and Ho-Gi Kim, “Microstructure dependence of electrical properties of (Ba0.5Sr0.5)TiO3 thin films deposited on Pt/SiO2/Si”. J. Appl. Phys., 80, 5891, (1996)
    [113] Joon Lee, Young-Chul Choi1 and Byung-Soo Lee, “Effects of O 2/Ar Ratio and Annealing on the Properties of (Ba,Sr)TiO 3 Films Prepared by RF Magnetron Sputtering”. Jpn. J. Appl. Phys., 36, 3644 (1997)
    [114]M. S. Tsai, S. C .Sun and T. Y. Tseng, “Effect of oxygen to argon ratio on properties of (Ba,Sr)TiO3 thin films prepared by radio-frequency magnetron sputtering”. J. Appl. Phys., 82, 3482, (1997)
    [115]S.K. Streiffer, C. Basceri, C.B. Parker, S.E. Lash, and A.I. Kingon, “Ferroelectricity in thin films: The dielectric response of fiber-textured
    (BaxSr1–x)Ti1 + yO3 + z thin films grown by chemical vapor deposition”. J. Appl. Phys., 86, 4565 (1999).
    [116] Shintaro Yamamichi, Akiko Yamamichi, Donggun Park, Tsu-Jae King , and Chenming Hu, “Impact of Time Dependent Dielectric Breakdown and Stress-Induced Leakage Current on the Reliability of High Dielectric Constant (Ba, Sr)TiO3 Thin-Film Capacitors for Gbit-Scale DRAM’s”. IEEE Trans. Electron. Dev., 46, 342(1999)
    [117] I. Levin,R. D. Leapman, D. L. Kaiser, “ Accommodation of excess Ti in(Ba,Sr)TiO3 thin film with 53.4% Ti grown on Pt/SiO2 /Si by metalorganic chemical-vapor deposition”. Appl. Phys. Lett., 75, 1299(1999)
    [118] Shintaro Yamamichi, Hisato Yabuta, Toshiyuki Sakuma, and Yoichi Miyasaka, “(Ba+Sr)/Ti ratio dependence of the dielectric properties for (Ba0.5Sr0.5TiO3) thin films prepared by ion beam sputtering”. Appl. Phys. Lett., 75, 1299(1999)
    [119] J. Robertson and C. W. Chen. “Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalite”. Appl.Phys. Lett., 74, 1168(1999).
    [120]Cormac McGuinness, Dongfeng Fu, James E. Downes, and Kevin E. Smith. “Electronic structure of thin film silicon oxynitrides measured using soft x-ray emission and absorption”. J. Appl. Phys., 94, 3919(2003)
    [121] Timothy A. Rost,a) He Lin, and Thomas A. Rabso. “Deposition and analysis of lithium niobate and other lithium niobium oxides by rf magnetron sputtering”. J. Appl. Phys. 72 , 4336 (1992).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE