簡易檢索 / 詳目顯示

研究生: 黎英芳
Le Anh Phuong
論文名稱: 表面接枝聚(3-烷基噻吩)於奈米碳管之合成與光電性質研究
The Synthesis and Optoelectronic Behaviour of Conjugated Polymer Poly(3-hexylthiophene) P3HT Grafted on the surface of Multi-Walled Carbon Nanotubes
指導教授: 楊長謀
Yang, A.C.-M.
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 69
中文關鍵詞: poly(3-hexylthiophene)multi-walled carbon nanotubesa "grafting from" methodphotovoltaic behaviour
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A nanocomposite of multi-walled carbon nanotubes (MWCNTs) and poly(3-hexylthiophene) (P3HT) was prepared by grafting P3HT on the surface of CNTs via a “grafting from” method. By using chemical oxidative polymerization with controlling the reaction condition, different coating thickness of P3HT on MWCNTs was obtained. P3HT grafted on the surface of MWCNTs (P3HT-g-CNT) are soluble in common organic solvents. Fourier Transform Infrared (FT-IR) spectra was employed to characterize the change in the surface functionalities. The transmission electron microscopy (TEM) micrographs showed the uniform coating of P3HT on CNTs with the thickness 2.1 nm, 3.6 nm and 8.3 nm. Thermogravimetric analysis (TGA) was used to study the polymer content grafted on the surface of MWCNTs. The wide-angle X-ray scattering (WAXS) presented the disordered structure of P3HT chains grafted on CNTs. The Raman scattering indicated that the polymer conformation is modified by π-π interaction with CNTs which causes a shift of P3HT peak from 1445 cm-1 to 1430 cm-1. Furthermore, although the photoluminescence peak of P3HT remained unchanged when grafted on CNTs, modifications of the energy gap of P3HT was observed, indicating variations of vibronic levels arising from the grafting. Moreover, broadening of the PL emission peaks took place that suggested decreasing of lifetimes of the photo-excited species when grafted on CNTs. The bilayer photovoltaic devices based on pure P3HT blended with P3HT-g-CNT (P3HT/P3HT-g-CNT) as the electron donor and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) as the electron-acceptor showed an enhanced photocurrent density and power conversion efficiency compared to photovoltaic devices based on pure P3HT and P3HT/P3HT-g-CNT.


    Table of Contents Chapter 1 Introduction 1 Chapter 2 Literature review 3 2.1 Structures of CNTs 3 2.2 Productions of CNTs 5 2.2.1 The arc-evaporation technique 5 2.2.2 Laser ablation method 6 2.2.3 Catalytic growth 7 2.3 Chemically functionalized carbon nanotubes 8 2.3.1 Oxidation of CNTs 9 2.3.2 The grafting polymer chains on the surface of CNTs 10 2.4 The role of CNTs in electronic materials 11 2.4.1 Organic light emitting diodes (OLEDs) 12 2.4.2 Organic thin film solar cell 13 2.5 Polythiophene and Poly (3-hexylthiophene) (P3HT) 15 Chapter 3 Experimental details 16 3.1 Materials 16 3.2 The process to synthesize P3HT grafted on the surface of MWCNTs 17 3.2.1 Acid treatment of MWCNTs 18 3.2.2 Synthesis of P3HT chains grafted to the surface of MWCNTs 19 3.3 Preparation of P3HT 22 3.4 Defunctionalization of P3HT-g-MWCNTs 22 3.5 Device Fabrication of the Organic Photovoltaic Cell 23 3.6 Characterizations 25 3.7 Instruments 26 3.7.1 Fourier Transform Infrared (FT-IR) 26 3.7.2 Transmission Electron Microscopy (TEM) 27 3.7.3 Thermogravimetric analysis (TGA) 28 3.7.4 Gel Permeation Chromatography (GPC) 29 3.7.5 Raman spectroscopy 30 3.7.6 Photoluminescence (PL) 31 Chapter 4 Results and discussions 32 4.1 Dispersion observation. 32 4.2 The regioregularity of P3HT 33 4.3 FTIR spectra 34 4.4 TEM micrographs 35 4.5 Wide-Angle X-ray Scattering 38 4.6 Thermogravimetry analysis 40 4.7 Raman spectroscopy characterization 42 4.8 Photoluminescence spectra 44 4.8 Current – voltage (I –V) characteristics 52 Chapter 5 Conclusion 65 References 66 List of figures Figure 2.1 Structures of CNTs 3 Figure 2.2 Possible vectors specified by the pairs of integers [m,n] for general CNTs 4 Figure 2.3 Arc discharge apparatus produced the first carbon nanotubes 5 Figure 2.4 Schematics of a laser ablation set-up 6 Figure 2.5 Schematics of a CVD deposition oven. 7 Figure 2.6 Functionalization possibilities for SWCNTs 8 Figure 2.7 Optimized device structure for bulk heterojunction organic solar cells 14 Figure 2.8 The chemical structure of P3HT 15 Figure 3.1 The flow chart of experiments 17 Figure 3.2 MWCNT acid-treatment 18 Figure 3.3 Monomer 3-thiopheneethanol (3TE) grafted on MWCNTs 19 Figure 3.4 Poly(3-hexylthiophene) grafted on MWCNTs - step I 20 Figure 3.5 Top and side view of the device structure for photovoltage 24 Figure 3.6 Scematic diagram of the proposed structure 24 Figure 3.7 Fourier Transform Infrared instrument 26 Figure 3.8 Schematic of layout of optical components in a basic TEM 27 Figure 3.9 Thermogravimetric analysis instrument 28 Figure 3.10 Schematic of a basic gel permeation chromatography 29 Figure 3.11 Gel permeation chromatography instrument 29 Figure 3.12 Photoluminescence instrument 31 Figure 4.1 The dispersion of CNT-g-monomer HET in (a) CH3Cl and (b) CH3CN 32 Figure 4.2 NMR spectra of P3HT 33 Figure 4.3 FT-IR spectra of MWCNTs-COOH , MWCNTs-COCl, MWCNTs-g-HET 34 Figure 4.4 TEM micrographs of MWCNTs-g-P3HT of step I 36 Figure 4.5 TEM micrographs of MWCNTs-g-P3HT of step II-A 36 Figure 4.6 TEM micrographs of MWCNTs-g-P3HT of step II-B 36 Figure 4.7 WAXS patterns 39 Figure 4.8 TGA analyses of acid treated MWCNTs, defunctionalized P3HT and P3HT-g-MWCNTs with different coating thickness. 40 Figure 4.9 Raman spectra of (a) acid treated MWCNTs, (b)MWCNT-g-P3HT-2, (c) MWCNT-g-P3HT-4, (d) MWCNT-g-P3HT-4 and (e) P3HT 42 Figure 4.10 PL and PLE spectra of MWCNT-g-P3HT-2 44 Figure 4.11 PL and PLE spectra of MWCNT-g-P3HT-4 44 Figure 4.12 PL and PLE spectra of MWCNT-g-P3HT-8 44 Figure 4.13 The intensity comparision of PL spectra of MWCNT-g-P3HT with different coating thickness 45 Figure 4.14 The comparision of PL spectra of P3HT-g-MWCNTs with different coating thickness with the normalized P3HT content. 46 Figure 4.15 PL and PLE spectra of neat P3HT with different molecular weight. 49 Figure 4.16 The PL maximum peak versus the molecular weight 49 Figure 4.17 PL and PLE spectra of MWCNT-g-P3HT-2, defunctionalized P3HT (from the step I with the Mw: 13K) and neat P3HT (Mw: 14K) 50 Figure 4.18 PL and PLE spectra of MWCNT-g-P3HT-4, defunctionalized P3HT (from the step II-A with the Mw: 30K) and neat P3HT (Mw: 32K) 50 Figure 4.19 PL and PLE spectra of MWCNT-g-P3HT-8, defunctionalized P3HT (from step II-B with the Mw: 66K) and neat P3HT (Mw: 70K) 50 Figure 4.20 The PL maximum peak of neat P3HT, defunctionalized P3HT and P3HT-g-MWCNTs versus the molecular weight. 51 Figure 4.21 The I-V curve of acid-treated MWCNTs 52 Figure 4.22 I-V characteristics of the photovoltaic cell where P3HT (Mw:70K) was served as the active layer 53 Figure 4.23 I-V characteristics of the photovoltaic cell where P3HT blending with 1% MWCNTs-COOH was served as the active layer. 53 Figure 4.24 I-V characteristics of the photovoltaic cell, where MWCNTs-g-P3HT-2 was served as the active layer 54 Figure 4.25 I-V characteristics of the photovoltaic cell, where P3HT blending with 50% MWCNTs-g-P3HT-2 was served as the active layer 54 Figure 4.26 I-V characteristics of the photovoltaic cell, where P3HT blending with 10% MWCNTs-g-P3HT-2 was served as the active layer 55 Figure 4.27 I-V characteristics of the photovoltaic cell, where P3HT blending with 5% MWCNTs-g-P3HT-2 was served as the active layer 56 Figure 4.28 I-V characteristics of the photovoltaic cell where P3HT blending with 1% MWCNTs-g-P3HT-2 was served as the active layer. 56 Figure 4.29 I-V characteristics of the photovoltaic cell where P3HT blending with 10% MWCNTs-g-P3HT-4 was served as the active layer 57 Figure 4.30 I-V characteristics of the photovoltaic cell where P3HT blending with 5% MWCNTs-g-P3HT-4 was served as the active layer. 58 Figure 4.31 I-V characteristics of the photovoltaic cell where P3HT blending with 1% MWCNTs-g-P3HT-4 was served as the active layer. 58 Figure 4.32 I-V characteristics of the photovoltaic cell where P3HT blending with 10% MWCNTs-g-P3HT-8 was served as the active layer. 59 Figure 4.33 I-V characteristics of the photovoltaic cell where P3HT blending with 5% MWCNTs-g-P3HT-8 was served as the active layer. 59 Figure 4.34 I-V characteristics of the photovoltaic cell where P3HT blending with 1% MWCNTs-g-P3HT-8 was served as the active layer. 60 Figure 4.35 The open circuit voltage versus the concentration of MWCNT-g-P3HT with different coating thickness in nanocomposite for the active layer. 60 Figure 4.36 The short circuit current versus the concentration of MWCNT-g-P3HT with different coating thickness in nanocomposite for the active layer. 60 Figure 4.37 (a) J-V characteristics for solar cells based on P3HT and P3HT/MWCNT-g-P3HT-2(1%, 5% and 10%), (b) J-V characteristics for bilayer solar cells based on P3HT/PCBM and P3HT/MWCNT-g-P3HT-2(1% and 10%)/PCBM. 61 Figure 4.38 Band gap diagram of the bilayer device. 61 List of Tables Table 3.1 List of materials 16 Table 3.2 Summary of conditions to synthesize P3HT grafting on MWCNTs 21 Table 4.1 The coating thickness calculated by TEM corresponding to the molecular weight determined by GPC 37 Table 4.2 The comparision of P3HT coating thickness between the results of TEM and TGA 41 Table 4.3 The band gap of MWCNTs-g-P3HT with different coating thickness. 45 Table 4.4 The spacing between 2 neibouring polymers grafted on CNTs. 47 Table 4.5 The overlapping percentage between 2 neibouring polymers grafted on CNTs . 45 Table 4.6 The performance of photovoltaic cells of P3HT and nanocomposites 62

    References

    1. S. Iijima, Nature 1991, 354, 56-58.
    2. X. W. Jiang, Y. Z. Bin, M.Matsuo, Polymer 2005, 46, 7418.
    3. Z. Ounaies, C. Park, K. E. Wise, E. J. Siochi, J. S. Harrison, Compos Sci Technol 2003, 63, 1637.
    4. S. Reich, C. Thomsen, J. Robertson, Phys. Rev. Lett. 2005, 308, 838.
    5. A. J. Miller, R. A. Hatton, S. R. P. Silva, Apply. Phys. Lett. 2006, 89, 133117.
    6. C. W. Lin, L. C. Huang, A. C-M. Yang, Macromolecules 2008, 41, 4978.
    7. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C. S. Ha, M. Ree, Letters 2006, 5.
    8. Y. Kanai, J. C. Grossman, Nano lett. 2008, 8, 3.
    9. S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Carroll, J. N. Coleman, A. B. Dalton, A. P. Davey, A. Drury, B. McCrathy, S. Maier, A. Strevens, Adv. Mater. 1998, 10, 1091.
    10. H. Ago, M. S. P. Shaffer, D. S. Ginger, A. H. Windle, R. H. Friend, Phys. Rev. B 2000, 61, 2286.
    11. S. J. Henley, R. A. Hatton, G. Y. Chen, C. Gao, H. Zeng, H. W. Kroto, S. R. P. Silva, Small 2007, 11, 1927.
    12. E. Kymakis et al., Nanotechnology 2007, 18, 435702.
    13. B. Philip, J. Xie, A. Chandrasekhar, J. Abraham, V. K. Varadan, Smart Mater. Struct. 2004, 13, 295.
    14. B. K. Kuila, K. Park, L. Dai, Macromolecules 2010, 43, 6699.
    15. http://en.wikipedia.org/wiki/Carbon_nanotube
    16. http://www.mrsec.wisc.edu/Edetc/nanoquest/carbon/index.html.
    17. P. M. Ajayan, T. W. Ebbesen, Rep. Prog. Phys. 1997, 60, 1025.
    18. T. W. Ebbesen, P.M. Ajayan, Nature 1992, 358, 220.
    19. Y. Ando, S. Iijima, Jpn. J. Appl. Phys. 1993, 32, L107.
    20. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162.
    21. B. I. Yakobson, R. E. Smalley, American Scientist 1997, 85, 324.
    22. http://ipn2.epfl.ch/CHBU/Ntproduction1.htm.
    23. Wang Wei et al., International Technology and Innovation Conference 2006.
    24. A. Hirsch, Angew. Chem. Ind. Ed. 2002, 41, 1853.
    25. Datsyuk et al., Carbon 2008, 46, 833.
    26. Kannan Balasubramanian, Marko Burghard, Small 2005, 2, 180.
    27. Georgios Sakellariou et al., Chem. Mater. 2008, 20, 6217.
    28. Baskaran, D.; Mays, J. W.; Bratcher, M. S. Chem. Mater. 2005, 17, 3389.
    29. M.-C. Wu, Y. Y. Lin, S. Chen, H. C. Liao, Y. J. Wu YJ, C. W. Chen, Y. F. Chen, W. F. Su, Chemical Physics Letters 2009, 468, 64.
    30. H. Ago, R. Petrisch, M. S. P. Shaffer, A. H. Windle, R. H. Friend, Adv. Mater. 1999, 11, 1281.
    31. H. S. Woo, R. Czerw, S. Webster, D. L. Carroll, J. Ballato, A. E. Strevens, D. O. Brien, and W. J. Blau, Apply. Phys. Lett. 2000, 77, 1393.
    32. H. S. Woo, R. Czerw, S. Webster, D. L. Carroll, J. W. Park, and J. H. Lee, Synth. Met. 2001, 116, 369.
    33. Adrian Nish et al., Nanotechnology 2008, 19, 095603.
    34. M. Baibarac, Gomez-Romero, J. Nanosci. Nanotech 2006, 6, 1.
    35. Brabec et al., J. C. Adv. Funct. Mater. 2001, 11, 15.
    36. W. Ma, C. Yang, X. Gong, K. Lee, A. Heeger, J. Adv. Funct. Mater. 2005, 15, 1617.
    37. Hee-Tae Jung et al., Adv. Funct. Mater. 2008, 18, 2659.
    38. H. Hoppe et al., J. Mater. Res. 2004, 19, 7.
    39. B. K. Kuila, S. Malik, S. K. Batabyal, A. K. Nandi, Macromolcules 2007, 40, 278.
    40. M. Manceau, A. Rivaton, J. L. Gardette, S. Guillerez, N. Lemaitre, Polymer Degradation and Stability 2009, 94, 898.
    41. A. W. Musumeci, G. G. Silva, J. W. Liu, W. N. Martens, E. R. Waclawik, Polymer 2007, 48, 1667.
    42. J. Geng, B. S. Kong, S. B. Yang, S. C. Youn, S. Park, T. Joo, H. T. Jung, Adv. Funct. Mater. 2008, 18, 2659.
    43. M. R. Karim, C. J. Lee, M. S. Lee, Journal of PolymerScience: Part A: Polymer Chemistry, 2006, 44, 5283.
    44. M. R. Karim, J. H. Yeum, M. S. Lee, K. T. Lim, Materials Chemistry and Physics 2008, 112, 779.
    45. Yi Lin et al., Macromolecules 2003, 36, 7199.
    46. D. B Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates Jr, J. Liu, R. E. Smalley, J. Am. Chem. Soc. 2000, 122, 2383.
    47. J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, Z. Du, J. Phys. Chem. B. 2003, 107, 3712.
    48. T. Olinga, B. Francois, Synthetic Metals 1995, 69, 297.
    49. M. R. Andersson MR, D. Selse, M. Berggren M, H. Jarvinen H, T. Hjertberg, O. Inganas, O. Wennerstrom, J. E. Osterholm, Macromolecules 1994, 27, 6503.
    50. Y. K. Han, Y. J. Lee, P. C. Huang, Journal of the Electrochemical Society 2009, 156, 37.
    51. Hao Kong, Chao Gao, Deyue Yan, Macromolecules 2004, 37, 4022.
    52. http://www.wcaslab.com/tech/tbftir.htm.
    53. http://www.miplaza.com/materialsanalysis/projects/technicalnotessurfaceandthinfilmanalysis/temtn.pdf.
    54. http://en.wikipedia.org/wiki/Transmission_electron_microscopy
    55. http://en.wikipedia.org/wiki/Thermogravimetric_analysis
    56. http://www.waters.com/waters/nav.htm?locale=zh_TW&cid=10167568.
    57. http://en.wikipedia.org/wiki/Raman_spectroscopy
    58. http://en.wikipedia.org/wiki/Photoluminescence
    59. S. L. Liu, J. Yue, R. Wehmschulte, J. Nano. Lett. 2002, 2, 1439.
    60. B. McCarthy, J. N. Coleman, R. Czerw, A. B. Dalton, M. Panhuis, A. Maiti, A. Drury, P. Bernier, J. B. Nagy, B. Lahr, H. J. Byrne, D. L. Carroll, W. J. Blau, Journal of Physical Chemistry B 2002, 106, 9.
    61. S. Costa S, E. B. Palen, M. Kruszynska, A. Bachmatiuk, R. J. Kalenczuk, Materials Science-Poland 2008, 26, 433.
    62. A. Pron, G. Louran, M. Lapkowsky, M. Zagorska, J. Glowczyk-Zubek, S. Lefrant, Macromolecules 1995, 28, 4644.
    63. G. Louran , M. Trznadel, J. P. Buisson, J. Laska, A. Pron, M. Lapkowsky, S. Lefrant, J Phys Chem 1996, 100, 1232.
    64. Heffner, Pearson, Macromolecules 1991, 24, 23.
    65. http://mathworld.wolfram.com/Sphere-SphereIntersection.html
    66. J. Liu, T. F. Guo, Y. Yang, J. App. Phys.2002, 91, 1595.
    67. H. L. Chou, S. Y. Hsu and P. K. Wei, Polymer 2005, 46, 4967.
    68. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nature Materials 2005, 4, 455.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE