研究生: |
黎英芳 Le Anh Phuong |
---|---|
論文名稱: |
表面接枝聚(3-烷基噻吩)於奈米碳管之合成與光電性質研究 The Synthesis and Optoelectronic Behaviour of Conjugated Polymer Poly(3-hexylthiophene) P3HT Grafted on the surface of Multi-Walled Carbon Nanotubes |
指導教授: |
楊長謀
Yang, A.C.-M. |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 69 |
中文關鍵詞: | poly(3-hexylthiophene) 、multi-walled carbon nanotubes 、a "grafting from" method 、photovoltaic behaviour |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
A nanocomposite of multi-walled carbon nanotubes (MWCNTs) and poly(3-hexylthiophene) (P3HT) was prepared by grafting P3HT on the surface of CNTs via a “grafting from” method. By using chemical oxidative polymerization with controlling the reaction condition, different coating thickness of P3HT on MWCNTs was obtained. P3HT grafted on the surface of MWCNTs (P3HT-g-CNT) are soluble in common organic solvents. Fourier Transform Infrared (FT-IR) spectra was employed to characterize the change in the surface functionalities. The transmission electron microscopy (TEM) micrographs showed the uniform coating of P3HT on CNTs with the thickness 2.1 nm, 3.6 nm and 8.3 nm. Thermogravimetric analysis (TGA) was used to study the polymer content grafted on the surface of MWCNTs. The wide-angle X-ray scattering (WAXS) presented the disordered structure of P3HT chains grafted on CNTs. The Raman scattering indicated that the polymer conformation is modified by π-π interaction with CNTs which causes a shift of P3HT peak from 1445 cm-1 to 1430 cm-1. Furthermore, although the photoluminescence peak of P3HT remained unchanged when grafted on CNTs, modifications of the energy gap of P3HT was observed, indicating variations of vibronic levels arising from the grafting. Moreover, broadening of the PL emission peaks took place that suggested decreasing of lifetimes of the photo-excited species when grafted on CNTs. The bilayer photovoltaic devices based on pure P3HT blended with P3HT-g-CNT (P3HT/P3HT-g-CNT) as the electron donor and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) as the electron-acceptor showed an enhanced photocurrent density and power conversion efficiency compared to photovoltaic devices based on pure P3HT and P3HT/P3HT-g-CNT.
References
1. S. Iijima, Nature 1991, 354, 56-58.
2. X. W. Jiang, Y. Z. Bin, M.Matsuo, Polymer 2005, 46, 7418.
3. Z. Ounaies, C. Park, K. E. Wise, E. J. Siochi, J. S. Harrison, Compos Sci Technol 2003, 63, 1637.
4. S. Reich, C. Thomsen, J. Robertson, Phys. Rev. Lett. 2005, 308, 838.
5. A. J. Miller, R. A. Hatton, S. R. P. Silva, Apply. Phys. Lett. 2006, 89, 133117.
6. C. W. Lin, L. C. Huang, A. C-M. Yang, Macromolecules 2008, 41, 4978.
7. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C. S. Ha, M. Ree, Letters 2006, 5.
8. Y. Kanai, J. C. Grossman, Nano lett. 2008, 8, 3.
9. S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Carroll, J. N. Coleman, A. B. Dalton, A. P. Davey, A. Drury, B. McCrathy, S. Maier, A. Strevens, Adv. Mater. 1998, 10, 1091.
10. H. Ago, M. S. P. Shaffer, D. S. Ginger, A. H. Windle, R. H. Friend, Phys. Rev. B 2000, 61, 2286.
11. S. J. Henley, R. A. Hatton, G. Y. Chen, C. Gao, H. Zeng, H. W. Kroto, S. R. P. Silva, Small 2007, 11, 1927.
12. E. Kymakis et al., Nanotechnology 2007, 18, 435702.
13. B. Philip, J. Xie, A. Chandrasekhar, J. Abraham, V. K. Varadan, Smart Mater. Struct. 2004, 13, 295.
14. B. K. Kuila, K. Park, L. Dai, Macromolecules 2010, 43, 6699.
15. http://en.wikipedia.org/wiki/Carbon_nanotube
16. http://www.mrsec.wisc.edu/Edetc/nanoquest/carbon/index.html.
17. P. M. Ajayan, T. W. Ebbesen, Rep. Prog. Phys. 1997, 60, 1025.
18. T. W. Ebbesen, P.M. Ajayan, Nature 1992, 358, 220.
19. Y. Ando, S. Iijima, Jpn. J. Appl. Phys. 1993, 32, L107.
20. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162.
21. B. I. Yakobson, R. E. Smalley, American Scientist 1997, 85, 324.
22. http://ipn2.epfl.ch/CHBU/Ntproduction1.htm.
23. Wang Wei et al., International Technology and Innovation Conference 2006.
24. A. Hirsch, Angew. Chem. Ind. Ed. 2002, 41, 1853.
25. Datsyuk et al., Carbon 2008, 46, 833.
26. Kannan Balasubramanian, Marko Burghard, Small 2005, 2, 180.
27. Georgios Sakellariou et al., Chem. Mater. 2008, 20, 6217.
28. Baskaran, D.; Mays, J. W.; Bratcher, M. S. Chem. Mater. 2005, 17, 3389.
29. M.-C. Wu, Y. Y. Lin, S. Chen, H. C. Liao, Y. J. Wu YJ, C. W. Chen, Y. F. Chen, W. F. Su, Chemical Physics Letters 2009, 468, 64.
30. H. Ago, R. Petrisch, M. S. P. Shaffer, A. H. Windle, R. H. Friend, Adv. Mater. 1999, 11, 1281.
31. H. S. Woo, R. Czerw, S. Webster, D. L. Carroll, J. Ballato, A. E. Strevens, D. O. Brien, and W. J. Blau, Apply. Phys. Lett. 2000, 77, 1393.
32. H. S. Woo, R. Czerw, S. Webster, D. L. Carroll, J. W. Park, and J. H. Lee, Synth. Met. 2001, 116, 369.
33. Adrian Nish et al., Nanotechnology 2008, 19, 095603.
34. M. Baibarac, Gomez-Romero, J. Nanosci. Nanotech 2006, 6, 1.
35. Brabec et al., J. C. Adv. Funct. Mater. 2001, 11, 15.
36. W. Ma, C. Yang, X. Gong, K. Lee, A. Heeger, J. Adv. Funct. Mater. 2005, 15, 1617.
37. Hee-Tae Jung et al., Adv. Funct. Mater. 2008, 18, 2659.
38. H. Hoppe et al., J. Mater. Res. 2004, 19, 7.
39. B. K. Kuila, S. Malik, S. K. Batabyal, A. K. Nandi, Macromolcules 2007, 40, 278.
40. M. Manceau, A. Rivaton, J. L. Gardette, S. Guillerez, N. Lemaitre, Polymer Degradation and Stability 2009, 94, 898.
41. A. W. Musumeci, G. G. Silva, J. W. Liu, W. N. Martens, E. R. Waclawik, Polymer 2007, 48, 1667.
42. J. Geng, B. S. Kong, S. B. Yang, S. C. Youn, S. Park, T. Joo, H. T. Jung, Adv. Funct. Mater. 2008, 18, 2659.
43. M. R. Karim, C. J. Lee, M. S. Lee, Journal of PolymerScience: Part A: Polymer Chemistry, 2006, 44, 5283.
44. M. R. Karim, J. H. Yeum, M. S. Lee, K. T. Lim, Materials Chemistry and Physics 2008, 112, 779.
45. Yi Lin et al., Macromolecules 2003, 36, 7199.
46. D. B Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates Jr, J. Liu, R. E. Smalley, J. Am. Chem. Soc. 2000, 122, 2383.
47. J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, Z. Du, J. Phys. Chem. B. 2003, 107, 3712.
48. T. Olinga, B. Francois, Synthetic Metals 1995, 69, 297.
49. M. R. Andersson MR, D. Selse, M. Berggren M, H. Jarvinen H, T. Hjertberg, O. Inganas, O. Wennerstrom, J. E. Osterholm, Macromolecules 1994, 27, 6503.
50. Y. K. Han, Y. J. Lee, P. C. Huang, Journal of the Electrochemical Society 2009, 156, 37.
51. Hao Kong, Chao Gao, Deyue Yan, Macromolecules 2004, 37, 4022.
52. http://www.wcaslab.com/tech/tbftir.htm.
53. http://www.miplaza.com/materialsanalysis/projects/technicalnotessurfaceandthinfilmanalysis/temtn.pdf.
54. http://en.wikipedia.org/wiki/Transmission_electron_microscopy
55. http://en.wikipedia.org/wiki/Thermogravimetric_analysis
56. http://www.waters.com/waters/nav.htm?locale=zh_TW&cid=10167568.
57. http://en.wikipedia.org/wiki/Raman_spectroscopy
58. http://en.wikipedia.org/wiki/Photoluminescence
59. S. L. Liu, J. Yue, R. Wehmschulte, J. Nano. Lett. 2002, 2, 1439.
60. B. McCarthy, J. N. Coleman, R. Czerw, A. B. Dalton, M. Panhuis, A. Maiti, A. Drury, P. Bernier, J. B. Nagy, B. Lahr, H. J. Byrne, D. L. Carroll, W. J. Blau, Journal of Physical Chemistry B 2002, 106, 9.
61. S. Costa S, E. B. Palen, M. Kruszynska, A. Bachmatiuk, R. J. Kalenczuk, Materials Science-Poland 2008, 26, 433.
62. A. Pron, G. Louran, M. Lapkowsky, M. Zagorska, J. Glowczyk-Zubek, S. Lefrant, Macromolecules 1995, 28, 4644.
63. G. Louran , M. Trznadel, J. P. Buisson, J. Laska, A. Pron, M. Lapkowsky, S. Lefrant, J Phys Chem 1996, 100, 1232.
64. Heffner, Pearson, Macromolecules 1991, 24, 23.
65. http://mathworld.wolfram.com/Sphere-SphereIntersection.html
66. J. Liu, T. F. Guo, Y. Yang, J. App. Phys.2002, 91, 1595.
67. H. L. Chou, S. Y. Hsu and P. K. Wei, Polymer 2005, 46, 4967.
68. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nature Materials 2005, 4, 455.