研究生: |
陳柏廷 Chen, Po-Ting |
---|---|
論文名稱: |
利用奈米球微影術製備鉭基蜂窩狀結構並藉表面電漿效應及Z-scheme異質結構提升其光催化水解產氫 Fabrication of Ta-based Nanohoneycombs by Nanosphere Lithography and Their Improved Photocatalytic Hydrogen Generation by Surface Plasmon Effect and Z-scheme Structure |
指導教授: |
彭宗平
Perng, Tsong-Pyng |
口試委員: |
柯志忠
Kei, Chi-Chung 蜜希菈 Mishra, Mrinalini |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2020 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 126 |
中文關鍵詞: | 光觸媒 、光催化產輕 、水解產氫 、Z-scheme異質結構 、奈米球微影技術 、蜂窩狀結構 、氧化鉭 、氮化鉭 、氧化鎢 、原子層沉積 、表面電漿效應 |
外文關鍵詞: | Photocatalyst, Hydrogen evolution, Z-scheme structure, solution-based nanosphere lithography, Nanohoneycomb, Tantalum oxide, Tantalum nitride, Tungsten oxide, Atomic layer deposition, Surface plasmon resonance, Water splitting |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,各種環境問題已引起極大關注,例如全球暖化、海平面上升和空氣污染。由於二氧化碳的排放增加,因此必須減少化石能源之使用,開發可再生能源。氫氣是可再生且乾淨的能源,可以減少空氣污染及溫室氣體的排放。只要光觸媒的能隙大小允許,在光的照射下即可以藉由分解水產生氫氣。
雖然已有大量的光觸媒被廣泛發展用來產生氫氣,但其效率仍然有待提升。 奈米結構是個有潛力的材料結構,因可增加光觸媒的表面積而提升效率。奈米球微影技術(NSL)是一種用來製作二維週期性奈米結構陣列的簡單且低成本的方法。將聚苯乙烯(PS)奈米球沉積到基板上,經由自組裝形成六方最密堆積結構,此結構可利用為沉積模板。
本研究係將400、200及100奈米的聚苯乙烯奈米球塗佈在矽基板上作為模板,接著滴入鉭溶液填充奈米球的間隙,然後加熱到500 ºC移除聚苯乙烯奈米球,即可得到鉭基蜂窩狀結構。其後,將實驗分為兩部分。在Part A,將試片在空氣中退火,可得到結晶的氧化鉭(Ta2O5)。再以磁制濺鍍法鍍上一層金膜,經加熱至800-1000 ºC並持溫一小時後,可形成金奈米顆粒,作為光觸媒。由於表面電漿共振效應,此光觸媒可以額外吸收可見光,提高水解產氫效率。在Part B,將先前製得的鉭基蜂窩結構在氨氣下退火,可得到氮化鉭(Ta3N5)蜂窩結構。除此之外,同樣利用奈米球微影技術來製備氧化鎢(WO3)蜂窩狀結構,接著使用五甲基二甲基氨基鉭和氨氣分別作為鉭和氮的前驅物,藉由ALD將氮化鉭鍍在氧化鎢蜂窩結構上,氮化鉭的成長速率為每一循環 0.5 Å。所有試片利用掃描式電子顯微鏡、X光繞射儀、能量散射X光、掃描式探針顯微鏡、紫外光/可見光光譜儀、螢光光譜儀以及氣相層析儀,分析其結構與特性。
在Part A,利用蜂窩狀結構當作模板,可使氮化鉭的光催化效率明顯提高。經過四小時全光譜的照射後,100奈米的氧化鉭蜂窩結構的產氫量約為2322.9 μmol/ g,高於氧化鉭薄膜3.6倍。就金沉積在氧化鉭蜂窩狀結構來說,隨沉積的時間不同,其顆粒大小也不同。400奈米的氧化鉭蜂窩狀的式樣,若沉積時間控制在50秒至80秒,每個窩穴中只形成一顆金晶粒,其晶粒直徑由160奈米增至216奈米。而對200奈米氧化鉭蜂窩的結構,若沉積時間為30秒和40秒,其金的顆粒平均粒徑分別為129奈米和133奈米。至於100奈米氧化鉭蜂窩結構,其金的顆粒粒徑則縮小至65和67奈米。透過時域有限差分模擬,可看出當金顆粒越小,且兩個金顆粒越接近,其電場強度越強。在可見光照射下,金沉積在氧化鉭蜂窩結構確實可與可見光反應,例如65奈米的金沉積在100奈米的氧化鉭蜂窩結構有最高的產氫,其產氫量達83.3 μmol/ g。奈米球微影技術及金的沉積,因具較高的表面積及表面電漿效應,而有較佳的光催化效率。在Part B,100奈米的氮化鉭蜂窩狀結構的在全光譜的光照下產氫量為1501.7 μmol/ g,是氮化鉭薄膜的2.8倍。因此,利用蜂窩狀結構可使效率明顯提高,其效果與氧化鉭相同。雖然氮化鉭的能帶較小,理論上能與可見光反應,但因為電子電洞再結合速率太快,在可見光照射下無法產生氫氣。因此,將氧化鎢與氮化鉭結合形成Z-scheme結構,以降低再結合速率,並提升光催化效率。在四小時可見光的照射下,氮化鉭在100奈米氧化鎢蜂窩狀結構的產氫量約為32.4 μmol/ g,這可歸因於Z-scheme結構。另外,藉由鉑的沉積,此結構的產氫量可以提升到66.5 μmol/ g,為原本的兩倍。
In recent years, various environmental issues have been noticed, such as global warming, sea level rise, and air pollution. Due to the increasing emission of carbon dioxide, it is necessary to reduce utilization of fossil fuels and to develop renewable energies.
Hydrogen is regarded as a renewable and clean energy, and it is believed that hydrogen can reduce air pollution as well as emission of greenhouse gases. Photocatalyst can produce hydrogen via water splitting when the bandgap is suitable for photocatalysis of water under the solar light irradiation.
Nowadays, lots of photocatalysts have been developed for hydrogen generation, but the efficiency still needs to be improved. Nanostructure may increase the surface area of photocatalyst, and therefore enhancing the efficiency. The solution-based nanosphere lithography (s-NSL) is a facile and low-cost method to fabricate two-dimensional periodic nanostructure arrays. In this method, the self-assembly of polystyrene (PS) nanospheres are deposited onto a substrate to form a hexagonal close-packed structure, which is employed as a deposition mask.
In this study, 400, 200, and 100 nm PS nanospheres were coated on the Si substrate as a template. Tantalum solution was drop coated to fill in the interspaces of the nanospheres. The sample was then heated to 500 ºC to remove the PS nanospheres, and Ta2O5 nanohoneycomb (nHC) was obtained. In part A, the sample was annealed in air to crystallize Ta2O5. Furthermore, a gold film was deposited on the Ta2O5 nHC by magnetron sputtering followed by annealing to form Au nanoparticles within the cells of Ta2O5 nHC to improve the efficiency of photocatalyst. Due to the surface plasmon resonance (SPR) effect, it can absorb extra visible light. In part B, the as-prepared Ta2O5 nHC was nitridized in NH3 to obtain Ta3N5 nHC. In addition,WO3 nHC was prepared by the same s-NSL process as that of Ta2O5 nHC. Ta3N5 was then deposited on WO3 nHC by ALD using PDMAT as the precursor of tantalum and NH3 as the precursor of nitrogen. A Z-scheme of Ta3N5@WO3 nHC was constructed. The growth rate of Ta3N5 was 0.5 Å/cycle. Pt nanoparticles were further deposited on the Z-scheme by ALD. All of the samples were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), scanning probe microscopy (SPM), UV-visible absorption, photoluminescence spectrometry (PL), and gas chromatography (GC).
In part A, the photocatalytic efficiency of Ta2O5 was significantly improved after the nHC template was applied. The hydrogen production amount of 100 nm Ta2O5 nHC under 300 W Xe lamp irradiation is 2322.9 μmol/g, which is 3.6 times higher than that of the Ta2O5 film after 4 h irradiation. For Au@Ta2O5 nHCs, with different lengths of deposition time, the sizes of Au particles are different. For 400 nm Ta2O5 nHC, with the deposition time increasing from 50 s to 80 s, only a single gold particle is formed in each cell, and the particle size increases from 160 to 216 nm. For 200 nm Ta2O5 nHC, 30 and 40 s of deposition time, the average sizes of gold particles are about 129 and 133 nm, respectively. As for 100 nm Ta2O5 nHC, the particle sizes of gold particle are 65 and 67 nm. With the finite-difference time-domain (FDTD) simulation, when the size of gold particle and the interparticle distance decrease, the intensity of electric field will increase. For the photocatalysis under visible light (λ ≥ 420 nm) irradiation, the samples with Au on Ta2O5 nHC can respond to the visible light, and the hydrogen production amount of 65 nm Au on 100 nm Ta2O5 nHC has the highest efficiency, being 83.3 μmol/g. Therefore, the application of s-NSL and the deposition of gold show improved photocatalytic efficiency because of higher surface area and SPR effect, respectively. In part B, the hydrogen production amount of 100 nm Ta3N5 nHC under the full spectrum irradiation is 1501.7 μmol/g, 2.8 times higher than that of Ta3N5 film. The results are consistent with that of Ta2O5 nHC. Although Ta3N5 has a smaller band gap and can respond to visible light, the recombination rate is too high to generate hydrogen. Therefore, WO3 was coupled with Ta3N5 to form a Z-scheme system to reduce the recombination rate and to increase the activity of photocatalyst. The hydrogen generation amount of Ta3N5@100 nm WO3 nHC under visible light irradiation is 32.4 μmol/g for 4 h, which could be ascribed to the Z-scheme structure. In addition, with the deposition of Pt, the hydrogen generation of Pt@Ta3N5@100 nm WO3 is further increased to 66.5 μmol/g, two times higher than that of Ta3N5@100 nm WO3.
[1] P. Homewood, BP Energy Review 2018, in, 2019.
[2] R. Lindsey, Climate Change: Atmospheric Carbon Dioxide, in, 2020.
[3] X. Chen, S. Shen, L. Guo, S.S. Mao, "Semiconductor-based photocatalytic hydrogen generation", Chem. Rev., 2010, 110, 6503-6570.
[4] K. Rajeshwar, R. McConnell, S. Licht, Solar hydrogen generation, Springer, 2008.
[5] A. Fujishima, K. Honda, "Electrochemical photolysis of water at a semiconductor electrode", Nature, 1972, 238, 37-38.
[6] J. Gan, X. Lu, Y. Tong, "Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation", Nanoscale, 2014, 6, 7142-7164.
[7] D. Ollis, E. Pelizzetti, N. Serpone, "Photocatalysis: fundamentals and applications", Editores: N. Serpone and E. Pelizzetti. Wiley: New York, USA, 1989, 603-637.
[8] Y. Qu, X. Duan, "Progress, challenge and perspective of heterogeneous photocatalysts", Chem. Soc. Rev., 2013, 42, 2568-2580.
[9] A. Kubacka, M. Fernandez-Garcia, G. Colon, "Advanced nanoarchitectures for solar photocatalytic applications", Chem. Rev., 2012, 112, 1555-1614.
[10] J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, "Heterojunction Photocatalysts", Adv. Mater., 2017, 29, 1601694.
[11] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, "Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances", Chem. Soc. Rev., 2014, 43, 5234-5244.
[12] S.J. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, "Visible-light driven heterojunction photocatalysts for water splitting–a critical review", Energy Environ. Sci., 2015, 8, 731-759.
[13] H.J. Yun, H. Lee, N.D. Kim, D.M. Lee, S. Yu, J. Yi, "A combination of two visible-light responsive photocatalysts for achieving the Z-scheme in the solid state", ACS Nano, 2011, 5, 4084-4090.
[14] P. Zhou, J. Yu, M. Jaroniec, "All‐solid‐state Z‐scheme photocatalytic systems", Adv. Mater., 2014, 26, 4920-4935.
[15] A. Iwase, Y.H. Ng, Y. Ishiguro, A. Kudo, R. Amal, "Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light", J. Am. Chem. Soc., 2011, 133, 11054-11057.
[16] H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, Nat Mater 5: 782, in, 2006.
[17] J. Yu, S. Wang, J. Low, W. Xiao, "Enhanced photocatalytic performance of direct Z-scheme gC3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air", Phys. Chem. Chem. Phys., 2013, 15, 16883-16890.
[18] A.J. Bard, "Photoelectrochemistry and heterogeneous photocatalysis at semiconductors", J. Photochem., 1979, 10, 59-75.
[19] T. Suntola, J. Antson, Method for producing compound thin films, in, Google Patents, 1977.
[20] X. Meng, "An overview of molecular layer deposition for organic and organic–inorganic hybrid materials: mechanisms, growth characteristics, and promising applications", J. Mater. Chem. A, 2017, 5, 18326-18378.
[21] R.L. Puurunen, "Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process", J. Appl. Phys., 2005, 97. 121301.
[22] H.C.M. Knoops, S.E. Potts, A.A. Bol, W.M.M. Kessels, Atomic Layer Deposition, in: Handbook of Crystal Growth, 2015, pp. 1101-1134.
[23] V. Vandalon, The ALD/Database: looking back on the first year, in, 2019.
[24] R.L. Puurunen, "Growth per cycle in atomic layer deposition: a theoretical model", Chem. Vap. Deposition., 2003, 9, 249-257.
[25] W.-J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J.N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, K. Domen, "Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods", J. Phys. Chem. B, 2003, 107, 1798-1803.
[26] M. Hara, G. Hitoki, T. Takata, J.N. Kondo, H. Kobayashi, K. Domen, "TaON and Ta3N5 as new visible light driven photocatalysts", Catal. Today, 2003, 78, 555-560.
[27] Y.A. Buslaev, M. Glushkova, M. Ershova, E. Shustorovich, "Synthesis and properties of Ta2N3Cl and TaON", Izvestiya Akademii Nauk SSSR Neorg. Mater., 1966, 2, 2120-2124.
[28] Y.A. Buslaev, M. Safronov, V. Pakhomov, M. Glushkova, V. Repko, M. Ershova, A. Zhukov, T. Zhdanova, "Single crystals and structure of tantalium oxynitride", Izvestiya Akademii Nauk SSSR Neorg. Mater., 1969, 5, 45-48.
[29] D. Armytage, B. Fender, "Anion ordering in NaON: a powder neutron-diffraction investigation", Acta Crys., 1974, 30, 809-812.
[30] N. Brese, "O, Keeffe, M.; Rauch, P.; DiSalvo", Acta Crys., 1991, 47, 2291.
[31] Q.-L. Liu, Z.-Y. Zhao, J.-H. Yi, "Effects of crystal structure and composition on the photocatalytic performance of Ta–O–N functional materials", Phys. Chem. Chem. Phys., 2018, 20, 12005-12015.
[32] A. Krishnaprasanth, M. Seetha, "Solvent free synthesis of Ta2O5 nanoparticles and their photocatalytic properties", AIP Adv., 2018, 8, 055017.
[33] T. Wang, A. Arakaki, D. Kisailus, "Template-free synthesis of Ta3N5 hollow nanospheres as a visible-light-driven photocatalyst", J. Phys. Commun., 2019, 3. 075010
[34] Z. Wang, Y. Inoue, T. Hisatomi, R. Ishikawa, Q. Wang, T. Takata, S. Chen, N. Shibata, Y. Ikuhara, K. Domen, "Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles", Nat. Catal., 2018, 1, 756-763.
[35] Z.F. Huang, J. Song, L. Pan, X. Zhang, L. Wang, J.J. Zou, "Tungsten oxides for photocatalysis, electrochemistry, and phototherapy", Adv. Mater., 2015, 27, 5309-5327.
[36] R. Vemuri, G. Carbjal-Franco, D. Ferrer, M.H. Engelhard, C.V. Ramana, "Physical properties and surface/interface analysis of nanocrystalline WO3 films grown under variable oxygen gas flow rates", Appl. Surf. Sci., 2012, 259, 172-177.
[37] R. Chatten, A.V. Chadwick, A. Rougier, P.J. Lindan, "The oxygen vacancy in crystal phases of WO3", J. Phys. Chem. B, 2005, 109, 3146-3156.
[38] T. Vogt, P.M. Woodward, B.A. Hunter, "The high-temperature phases of WO3", J. Solid State Chem., 1999, 144, 209-215.
[39] W. Sahle, M. Nygren, "Electrical conductivity and high resolution electron microscopy studies of WO3− x crystals with 0≤ x≤ 0.28", J. Solid State Chem., 1983, 48, 154-160.
[40] E. Salje, K. Viswanathan, "Physical properties and phase transitions in WO3", Acta. Cryst., 1975, 31, 356-359.
[41] J.M. Berak, M. Sienko, "Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals", J. Solid State Chem., 1970, 2, 109-133.
[42] R.S. Vemuri, G. Carbjal-Franco, D.A. Ferrer, M.H. Engelhard, C.V. Ramana,"Physical properties and surface/interface analysis of nanocrystalline WO3 films grown under variable oxygen gas flow rates", Appl. Surf. Sci., 2012, 259, 172-177.
[43] S. Wang, W. Fan, Z. Liu, A. Yu, X. Jiang, "Advances on tungsten oxide based photochromic materials: strategies to improve their photochromic properties", J. Mater. Chem. C, 2018, 6, 191-212.
[44] Z.F. Huang, J. Song, L. Pan, X. Zhang, L. Wang, J.J. Zou, "Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy", Adv. Mater., 2015, 27, 5309-5327.
[45] K.-I. Liu, Y.-C. Hsueh, C.-Y. Su, T.-P. Perng, "Photoelectrochemical application of mesoporous TiO2/WO3 nanohoneycomb prepared by sol–gel method", J. Hydrogen Energy, 2013, 38, 7750-7755.
[46] E.K. Salje, S. Rehmann, F. Pobell, D. Morris, K.S. Knight, T. Herrmannsdörfer, M.T. Dove, "Crystal structure and paramagnetic behaviour of", J. Phys., 1997, 9, 6563–6577.
[47] F.E. Osterloh, "Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting", Chem. Soc. Rev., 2013, 42, 2294-2320.
[48] C.L. Haynes, R.P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics”, J. Phys. Chem. B, 2001, 105, 5599-5611.
[49] J. Liu, C. Chen, G. Yang, Y. Chen, C.F. Yang, "Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays", Mater., 2017, 10, 381.
[50] S. Xue, W. Ousi-Benomar, R. Lessard, "Α-Fe2O3 thin films prepared by metalorganic deposition (MOD) from Fe (III) 2-ethylhexanoate", Thin Solid Films, 1994, 250, 194-201.
[51] W.-N. Shen, B. Dunn, C. Moore, M. Goorsky, T. Radetic, R. Gronsky, "Synthesis of nanoporous bismuth films by liquid-phase deposition", J. Mater. Chem., 2000, 10, 657-662.
[52] C.-C. Kei, K.-H. Kuo, C.-Y. Su, C.-T. Lee, C.-N. Hsiao, T.-P. Perng, "Metal oxide nano-honeycombs prepared by solution-based nanosphere lithography and the field emission properties", Chem. Mater., 2006, 18, 4544-4546.
[53] C.-C. Kei, T.-H. Chen, C.-M. Chang, C.-Y. Su, C.-T. Lee, C.-N. Hsiao, S.-C. Chang, T.-P. Perng, "Preparation of periodic arrays of metallic nanocrystals by using nanohoneycomb as reaction vessel", Chem. Mater., 2007, 19, 5833-5835.
[54] C.-C. Wang, C.-C. Kei, C.-L. Wang, T.-P. Perng, "Preparation and Optical Property of TiO2 Nanohoneycomb", J. Appl. Phys., 2008, 47, 757-759.
[55] Z. Fang, H.C. Aspinall, R. Odedra, R.J. Potter, "Atomic layer deposition of TaN and Ta3N5 using pentakis(dimethylamino)tantalum and either ammonia or monomethylhydrazine", J. Cryst. Growth, 2011, 331, 33-39.
[56] H.-E. Cheng, C.-C. Chen, "Morphological and photoelectrochemical properties of ALD TiO2 films", J. Electrochem. Soc., 2008, 155, D604-D607.
[57] E. Petryayeva, U.J. Krull, "Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review", Ana. Chim. Acta., 2011, 706, 8-24.
[58] S. Linic, P. Christopher, D.B. Ingram, "Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy", Nat. Mater., 2011, 10, 911-921.
[59] E. Hutter, J.H. Fendler, "Exploitation of Localized Surface Plasmon Resonance", Adv. Mater., 2004, 16, 1685-1706.
[60] K.A. Willets, R.P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing", Annu. Rev. Phys. Chem., 2007, 58, 267-297.
[61] W.A. Murray, W.L. Barnes, "Plasmonic materials", Adv. Mater., 2007, 19, 3771-3782.
[62] K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment”, J. Phys. Chem. B, 2003, 107, 668-677.
[63] L. Brus, "Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy", Acc.Chem. Res., 2008, 41, 1742-1749.
[64] E. Kowalska, O.O.P. Mahaney, R. Abe, B. Ohtani, "Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces", Phys. Chem. Chem. Phys., 2010, 12, 2344-2355.
[65] E. Kowalska, R. Abe, B. Ohtani, "Visible light-induced photocatalytic reaction of gold-modified titanium (IV) oxide particles: action spectrum analysis", Chem. Commun., 2009, 241–243.
[66] Y. Tian, T. Tatsuma, "Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2", Chem. Commun., 2004, 1810-1811.
[67] A. Primo, T. Marino, A. Corma, R. Molinari, H. Garcia, "Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO2 obtained by a biopolymer templating method", J. Am. Chem. Soc., 2011, 133, 6930-6933.
[68] M.K. Kumar, S. Krishnamoorthy, L.K. Tan, S.Y. Chiam, S. Tripathy, H. Gao, "Field effects in plasmonic photocatalyst by precise SiO2 thickness control using atomic layer deposition", ACS Catal., 2011, 1, 300-308.
[69] D.B. Ingram, S. Linic, "Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface", J. Am. Chem. Soc., 2011, 133, 5202-5205.
[70] P. Anger, P. Bharadwaj, L. Novotny, "Enhancement and quenching of single-molecule fluorescence", Phys. Rev. Lett., 2006, 96, 113002.
[71] D.D. Evanoff Jr, G. Chumanov, "Synthesis and optical properties of silver nanoparticles and arrays", Chem. Phys. Chem., 2005, 6, 1221-1231.
[72] B. Wen-Cheun Au, K.-Y. Chan, D. Knipp, "Effect of film thickness on electrochromic performance of sol-gel deposited tungsten oxide (WO3)", Opt. Mater., 2019, 94, 387-392.
[73] J. Tauc, R. Grigorovici, A. Vancu, "Optical properties and electronic structure of amorphous germanium", Phys. Status Solidi, 1966, 15, 627-637.
[74] G.C. Papavassiliou, "Optical properties of small inorganic and organic metal particles", Prog. Solid State Chem., 1979, 12, 185-271.
[75] W.-S. Liu, T.-P. Perng, "Ta2O5 hollow fiber composed of internal interconnected mesoporous nanotubes and its enhanced photochemical H2 evolution", J. Hydrogen Energy, 2019, 44, 17688-17696.
[76] B.-H. Wu, W.-T. Liu, T.-Y. Chen, T.-P. Perng, J.-H. Huang, L.-J. Chen, "Plasmon-enhanced photocatalytic hydrogen production on Au/TiO2 hybrid nanocrystal arrays", Nano Energy, 2016, 27, 412-419.
[77] Y. Luo, X. Liu, X. Tang, Y. Luo, Q. Zeng, X. Deng, S. Ding, Y. Sun, "Gold nanoparticles embedded in Ta2O5/Ta3N5 as active visible-light plasmonic photocatalysts for solar hydrogen evolution", J. Mater. Chem. A, 2014, 2, 14927-14939.
[78] K.-I. Liu, Y.-C. Hsueh, H.-S. Chen, T.-P. Perng, "Mesoporous TiO2/WO3 hollow fibers with interior interconnected nanotubes for photocatalytic application", J. Mater. Chem. A, 2014, 2, 5387-5393.
[79] J. Fu, C. Bie, B. Cheng, C. Jiang, J. Yu, "Hollow CoSx polyhedrons act as high-efficiency cocatalyst for enhancing the photocatalytic hydrogen generation of g-C3N4", ACS Sustain. Chem. Eng., 2018, 6, 2767-2779.
[80] S.K. Cushing, J. Li, F. Meng, T.R. Senty, S. Suri, M. Zhi, M. Li, A.D. Bristow, N. Wu, "Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor", J. Am. Chem. Soc., 2012, 134, 15033-15041.
[81] W.-P. Hsu, M. Mishra, W.-S. Liu, C.-Y. Su, T.-P. Perng, "Fabrication of direct Z-scheme Ta3N5-WO2.72 film heterojunction photocatalyst for enhanced hydrogen evolution", Appl. Catal. B, 2017, 201, 511-517.
[82] T. Sreethawong, S. Ngamsinlapasathian, S. Yoshikawa, "Facile surfactant-aided sol–gel synthesis of mesoporous-assembled Ta2O5 nanoparticles with enhanced photocatalytic H2 production", J. Mol. Catal. A: Chem., 2013, 374, 94-101.