簡易檢索 / 詳目顯示

研究生: 高億峯
Yi-Fong Kao
論文名稱: 評估VIP-Man胸部X光照像之器官劑量
organ doses for the chest x-ray examination based on the VIP-Man
指導教授: 董傳中
Chuan-Jong Tung
趙自強
Tsi-Chian Chao
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 93
中文關鍵詞: 器官劑量轉換因子胸部X光照像VIP-Man斷層假體蒙地卡羅方法BEAMnrc程式
外文關鍵詞: organ dose conversion factors, chest x-ray examination, VIP-Man, Monte Carlo method, BEAMnrc code
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於現代醫學的進步,造成國民所受的放射診斷輻射劑量十分可觀,因此如何評估病患劑量便顯得相當重要。對於照野固定的X光照像而言,病患的器官劑量無法直接度量,必須用入射表面劑量(entrance surface dose, ESD)作為指標,因此發展出一個轉換因子,其定義是器官劑量除以ESD。我們只要度量獲得X光照像時的ESD,藉由這個轉換因子,就可以很容易地知道器官劑量以評估健康風險。
    本研究乃利用一個理想的蒙地卡羅程式,BEAMnrc,來模擬X光機,然後將產生的X光入射到VIP-Man上,以模擬胸部X光照像時的器官劑量轉換因子。VIP-Man是高解析度的斷層假體(tomographic phantom),因此在計算器官劑量的結果上,具有良好的準確性。本文把模擬結果與NRPB-R186報告相互比較,以探討斷層假體和數學假體在模擬器官劑量轉換因子上的變因。此外,本文也模擬臺大醫院的X光機,並且將VIP-Man調整成符合台灣成年男性之平均身高體重,以求得我國國人胸部X光照像時之器官劑量轉換因子。
    由於個體之間的解剖幾何差異性,使的斷層假體僅適用於某一特定體型的人體,因此利用VIP-Man模擬出來的器官劑量轉換因子,在使用上也要特別小心。本文除了研究VIP-Man和數學假體在器官劑量轉換因子的差異外,也提供了符合我國國人的器官劑量轉換因子,以期作為最優化或國民劑量之研究開端。


    頁數 目錄 i 摘要 iii 圖目錄 iv 表目錄 vi 第一章 緒論 1 1.1 前言 1 1.2 輻射安全 2 1.3 劑量學 4 1.3.1 有效劑量 4 1.3.2 劑量指標及器官劑量轉換因子 6 1.4 假體 8 1.4.1 假體的概念 8 1.4.2 計算用假體的發展 10 1.5 蒙地卡羅方法 14 1.5.1 蒙地卡羅方法的原理 14 1.5.2 以蒙地卡羅方法模擬輻射遷移 15 1.6 研究目的和方法 18 1.7 論文架構 19 第二章 材料與方法 21 2.1 X光機的介紹 21 2.1.1 X光機之構造和原理 21 2.2.2 X光能譜 25 2.2 BEAMnrc的簡介 26 2.2.1 如何執行BEAMnrc 28 2.2.2 BEAMDP的使用 34 2.3 VIP-Man 35 2.3.1 VIP-Man的發展 35 2.3.2 VIP-Man在本文中的修正 41 第三章 結果與討論 46 3.1 X光能譜的來源 46 3.1.1 XCOMP3 46 3.1.2 X光能譜的比較 47 3.1.3 分段執行BEAMnrc 49 3.1.4 足跟效應 51 3.2 建立輻射和假體作用的模式 52 3.3 調整X光照射的幾何條件及驗證 53 3.3.1 NRPB-R186報告 53 3.3.2 調整照射幾何條件以及VIP-Man大小 55 3.3.3 照野的驗證 59 3.4 計算器官劑量轉換因子 60 3.4.1 與NRPB-R186報告比較 60 3.4.2 探討轉換因子的變因 64 3.4.3 解剖幾何的差異性 70 3.5 國人劑量轉換因子 72 第四章 結論與未來展望 75 4.1 結論 75 4.2 未來展望 76 第五章 參考文獻 78 第六章 附錄 83 6.1 讀入phase space file的fortran程式 83 6.2 本文模擬器官劑量轉換因子的結果 與NRPB-R186號告之比較 84 6.3 我國國人器官劑量轉換因子 91

    [1] Dosimetry Working Party of the Institute of
    Physical Sciences in Medicine.National protocol for
    patient dose measurements in diagnostic radiology.
    Chilton,NRPB, 1992.
    [2] ICRP. Diagnostic reference levels in medical imaging,
    DRAFT ICRP Committee3,2001.
    [3] Hart D, Wall BF. Radiation exposure of the UK
    population from medical and dental x-ray examinations.
    NRPB Publication W4, 2002.
    [4] ICRP. 1990 recommendations of the International
    Commission on Radiological Protection. Oxford: Pergamon
    Press, ICRP Publication 60, 1991.
    [5] Rosenstein, M. Organs doses in diagnostic radiology. US
    Department of Health, Education and Welfare, Food and
    Drug Administration. Rockville, MD, 1976.
    [6] Drexler G, Panzer W, Widenmann L, Williams G and Zankl
    M. The calculation of dose from external photon
    exposures using reference human phantoms and Monte
    Carlo methods, Part III: Organ doses in x-ray
    diagnosis. GSF-Bericht S-1026, ISSN 0721-1694, 1984.
    [7] Jones D G and Wall B F. Organ doses from medical x-ray
    examinations calculated using Monte Carlo techniques.
    NRPB Report R-186, 1985.
    [8] ICRU. Phantoms and computational models in therapy,
    diagnosis and protection ICRU Report 48. Bethesda, MD,
    1992.
    [9] Snyder W S, Ford M R, Warner G G and Fisher H L.
    Estimates of absorbed fractions for monoenergetic
    photon sources uniformly distributed in various
    organs of a heterogeneous phantom. MIRD Pamphlet No.5.
    J. Nucl. Med. 10, 1969.
    [10] ICRP. Report of the task group on Reference Man.
    Oxford: Pergamon Press,ICRP Publication 23, 1975.
    [11] Hwang J M L, Poston J W, Shoup R L and Warner G G.
    Maternal, fetal and pediatric phantoms. Oak Ridge, TN:
    Oak Ridge National Laboratory, Report No. ORNL-5046,
    259-261, 1975.
    [12] Jones R M, Poston J W, Hwang J L, Jones T D and Warner
    G G. The development and use of a fifteen year old
    equivalent mathematical phantom for internal dose
    calculations. Oak Ridge, TN: Oak Ridge National
    Laboratory, Report No. ORNL/TM-5278, 1976.
    [13] Deus S F and Poston J W. The development of a
    mathematical phantom representing a ten-year-old for
    use in internal dosimetry calculations. Oak Ridge, TN:
    Oak Ridge National Laboratory Health Physics Division
    Annual Progress, Report No. ORNL-5171, 76-79, 1976.
    [14] Cristy M. Mathematical phantoms representing children
    of various ages for use in estimates of internal dose.
    Oak Ridge, TN: Oak Ridge National Laboratory, Report
    No. ORNL/NUREG/TM-367, 1980.
    [15] Kramer R, Zankl M, Williams G and Drexler G. The
    calculation of dose from external photon exposures
    using reference human phantoms and Monte Carlo
    methods: part I. the male (Adam) and female (Eva)
    adult mathematical phantoms GSF-Report S-885, 1982.
    [16] Cristy M and Eckerman K F. Specific Absorbed Fractions
    of Energy at Various Ages from Internal Photon
    Sources. Oak Ridge, TN: Oak Ridge National Laboratory,
    Report No. ORNL/TM-8381 vol 1–7, 1987.
    [17] Stabin M G, Tagesson M, Thomas S R, Ljungberg M and
    Strand S E. Radiation dosimetry in nuclear medicine.
    Appl. Radiat. Isot. 50, 73–87, 1999.
    [18] Gibbs S J, Pujol A, Chen T-S, Malcolm A W and James A
    E. Patient risk from interproximal radiography. Oral
    Surgery, Oral Medicine, Oral Pathology 58, 347–54,
    1984.
    [19] Williams G, Zankl M, AbmayrW, Veit R and Drexler G.
    The calculation of dose from external photon exposures
    using reference and realistic human phantoms and Monte
    Carlo methods. Phys. Med. Biol. 31, 449–52, 1986.
    [20] Zankl M, Veit R, Williams G, Schneider K, Fendel H,
    Petoussi N and Drexler G. The construction of computer
    tomographic phantoms and their application in
    radiology and radiation protection. Radiat. Environ.
    Biophys. 27, 153–64, 1988.
    [21] Veit R, Zankl M, Petoussi N, Mannweiler E,Williams G
    and Drexler G. Tomographic anthropomorphic models,
    part I: construction technique and description of
    models of an 8 week old baby and a 7 year old child.
    GSF-Bericht 3/89, 1989.
    [22] Dimbylow P J. Proc. Voxel Phantom Development.
    Chilton, NRPB, 1996a.
    [23] Zubal I G, Harrell C R, Smith E O, Rattner Z, Gindi G
    and Hoffer P B. Computerized three-dimensional
    segmented human anatomy. Med. Phys. 21, 299–302, 1994.
    [24] Caon M, Bibbo G and Pattison J. An EGS4-ready
    tomographic computational model of a fourteen year-old
    female torso for calculating organ doses from CT
    examinations. Phys. Med. Biol. 44, 2213–25, 1999.
    [25] Saito K, Wittmann A, Koga S, Ida Y, Kamei K and Zankl
    M. The construction of a computed tomographic phantom
    for a Japanese male adult and the dose calculation
    system. Radiat. Environ. Biophys. 40, 69–76, 2001.
    [26] Xu X G, Chao T C and Bozkurt A. VIP-MAN: An image-
    based whole-body adult male model constructed from
    color photographs of the Visible Human project for
    multi-particle Monte Carlo calculations. Health Phys.
    78, 476–86, 2000.
    [27] Petoussi-Henss N, Zankl M, Fill U and Regulla D. The
    GSF family of voxel phantoms. Phys. Med. Biol. 47, 89–
    106, 2002.
    [28] Zankl M, Fill U, Petoussi-Henss N and Regulla D. Organ
    dose conversion coefficients for external photon
    irradiation of male and female voxel models. Phys.
    Med. Biol. 47, 2367-85, 2002.
    [29] Kramer R, Vieira JW, Khoury HJ, de Andrade Lima F. MAX
    meets ADAM: a dosimetric comparison between a voxel-
    based and a mathematical model for external exposure
    to photons. Phys Med Biol. 49(6), 887-910, 2004.
    [30] D.W.O. Rogers, C.-M. Ma, B. Walters, G.X. Ding, D.
    Sheikh-Bagheri and G. Zhang. BEAMnrc User’s Manual.
    National Research Council of Canada, 2002.
    [31] Spitzer, V.M., Whitlock, D.G. Atlas of the Visible
    Human Male. Jones and Bartlett Publishers
    International, 1998.
    [32] ICRP. Report of the task group on Reference Man.
    Oxford: Pergamon Press, ICRP Publication 23, 1975.
    [33] ICRU. Tissue substitutes in radiation dosimetry and
    measurement. ICRU Report 44. Bethesda, MD, 1989.
    [34] ICRP. Human respiratory tract model for radiological
    protection. Oxford: Pergamon Press, ICRP Publication
    66, 1994.
    [35] Chao T C, Xu X G. Specific absorbed fractions from the
    image-based VIP-man body model and EGS4-VLSI Monte
    Carlo code: Internal electron emitters. Phys. Med.
    Biol. 46, 901—927, 2001.
    [36] Chao T C, Bozkurt A, Xu X G. Conversion coefficients
    based on VIP-man anatomical model and EGS4-VLSI code
    for monoenergetic photon beams from 10keV to 10 MeV.
    Health Phys. 81(2), 163—183, 2001.
    [37] Chao T C, Bozkurt A, Xu X G. Dose conversion
    coefficients for 0.1—10 MeV electrons calculated for
    the VIP-Man tomographic model. Health Phys. 81(2),
    203—214, 2001.
    [38] Petoussi-Henss N, Zankl M, Drexler G, Panzer W and
    Regulla D. Calculation of backscatter factors for
    diagnostic radiology using Monte Carlo methods. Phys.
    Med. Biol. 43, 2237-50, 1998.
    [39] Bhat M, Pattison J, Bibbo G and Caon M. Diagnostic x-
    ray spectra: a comparison of spectra generated by
    different computational methods with a measured
    spectrum. Med. Phys. 25, 114-20, 1998.
    [40] T. R. Fewell and R. E. Shuping. Photon energy
    distribution of some typical diagnostic x-ray beams.
    Med. Phys. 4, 187–196, 1977.
    [41] Eckerman K F, Cristy M and Ryman J C. The ORNL
    Mathematical Phantom Series. Oak Ridge, TN, 1996.
    [42] http://media.justsports.net.tw/spo_demo/publish_local.
    asp, 行政院體育委員會網站, 九十一年體育統計.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE